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Abstract—This paper explores the use of passive, stereo
sensing for vision-based navigation. The traditional approach
uses dense depth algorithms, which can be computationally
costly or potentially inaccurate. These drawbacks compound
when including the additional computational demands as-
sociated to the sensor fusion, collision checking, and path
planning modules that interpret the dense depth measurements.
These problems can be avoided through the use of the stixel
representation, a compact and sparse visual representation for
local free-space. When integrated into a Planning in Perception
Space based hierarchical navigation framework, stixels permit
fast and scalable navigation for different robot geometries.
Computational studies quantify the processing performance and
demonstrate the favorable scaling properties over comparable
dense depth methods. Navigation benchmarking demonstrates
more consistent performance across high and low performance
compute hardware for PiPS-based stixel navigation versus
traditional hierarchical navigation.

I. Introduction
The major advances in autonomous navigation for mobile

robots are primarily due to technological achievements in
active range or depth sensing coupled with improved com-
pute hardware. These sensors support direct recovery of local
scene geometry and free space estimates for planning colli-
sion avoiding trajectories. However, active depth or ranging
sensors can be fooled by certain material properties, lack
the sensor resolution achievable by modern RGB camera
systems, and can be costly relative to cameras. Their benefits
include ease of use, long sensing distances, and reduced sen-
sitivity to the visual environment due to active illumination.
In cases where the negative factors outweigh the benefits
or passive sensing is required, stereo systems are candidate
alternatives. As an indirect depth system, their use requires
considering the computational costs of depth recovery and
leads to sensing versus computing trade-offs. For mobile
robots with limited on-board resources, this computational
challenge requires novel ways of interpreting stereo imagery.
Especially in the context of robot navigation where fast and
safe decisions should be made when traversing unknown
or partially known environments. Delays in stereo depth
estimation may undermine collision avoidance.

An algorithmic strategy to lower runtime costs is to ex-
plore alternative representations that not only produce sparse
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structure data, but keep sufficient depth information to make
informed decisions. One representation with algorithmic
consequences that has the potential to improve the run-time
properties of stereo processing for mobile ground vehicle
navigation and collision avoidance is the stixel world [1].
A stixel compactly and efficiently represents objects in the
image space much like a laser scan. It represents the ground
plane location of vertical obstacles in the world plus their
height, see Fig. 1(a). The colored column overlays in the
image depict stixels in the world; the red to green color
means near to far.

Another strategy to improve run-time is to lower the over-
head of collision checking. The most common instances sim-
plify the robot’s geometric representation to point, circular,
or polygonal geometries [2]. Over-simplified representations
of robots cause problems when estimating safe navigable tra-
jectories. The main source of latency and computational cost
is the mixed representation between sensor data and collision
geometry, and the need to make the former compatible with
the latter. Recently, the idea of Planning in Perception Space
(PiPS) [3] opted to reverse this process. Rather than mapping
sensor data to world geometry, collision checking maps robot
geometry into an ego-centric perceptual representation. PiPS
reduces the level of sensory data processing required to make
decisions regarding trajectory safety. Importantly it adapts to
different robot geometries.

Given that stixels are sparse, compact, mid-level repre-
sentations of local collision space, they are excellent candi-
dates for use by perception-space algorithms. Augmenting
the baseline stixel implementation with PiPS-compatible
elements should lead to a light weight stereo navigation
system. Being based on perception-space processing, the
system will have favorable scaling properties as a function
of the sensor resolution and the quantity of collision checks
performed. These scaling properties permit the use of stixels
across a diverse range of robot compute configurations,
from embedded to workstation class hardware. In essence
the stixel-based modifications will lead to a passive visual
navigation system that 1) lowers latency without sacrificing
safety in navigation, and 2) has better computational scaling.

II. Research Context
Stereo Vision. Though research into accurate stereo depth
estimation algorithms is quite extensive, both Block Match-
ing (BM) and Semi-Global Block Matching (SGBM) [1], [4]
continue to be used due to easily obtained code and their
ability to provide reasonable quality depth measurements
from discrete disparity estimates. Relative to other methods,
BM variants are relatively efficient, but relative to real-time
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Fig. 1: (a) Stixels overlaid on a robot’s camera view in a simulated environment. Stixels convert 3D geometry to 2D data that
can be reduced to 1.5D data. (b) The GPF-X hierarchical navigation system with a stixel-based, perception-space processing.

navigation needs, they can be slow. Contemporary methods
for dense stereo leverage the ability of deep networks and
availability of GPU processors [5], [6]. Deep network ap-
proaches are tuned to the stereo configuration and to the
target navigation scenario. For robots with on-board GPU’s,
they are good options. Likewise, if special purpose hardware
can be installed, such as FPGAs, then the off-loading of the
depth recovery computations both frees up compute demands
and provides low latency depth maps [7], [8]. Hardware-
enabled strategies for accelerating calculations also apply to
stixels [9]. The primary interest is in what value the stixel
representation provides.

The limiting properties of traditional stereo matching mo-
tivated the use of stixels as a compact, medium level, visual
representation [1]. The intent was to use stixels for robust
free space and object depth estimation from stereo cameras to
support navigation decision making. To that end, stixels were
shown to strengthen the priors associated to computer vision
algorithms for object detection [10]–[12] and semantic seg-
mentation [13], [14] tasks. While the original version of stixel
estimation required dense depth generation as the first step,
later methods directly estimated stixels in u-disparity domain
and u−v domain more efficiently [10], [15]. Interestingly, the
stixel applications cited above are not for collision-avoiding,
navigation-based front-ends though initially posited to have
such a use. This paper explores the value of stixels within a
vision-based hierarchical navigation system.
Vision-Based Navigation. Common navigation methods
based on stereo follow the traditional perceive-plan-act
pipeline, which attempts to assimilate all data into a common
representation for decision-making. The most prevalent being
occupancy grids, whether in 2D for mobile ground robots
[16], or 3D for aerial robots [17], [18]. For large-scale navi-
gation, these data structures are implemented in a hierarchical
manner with local (small-scale) and global (large-scale)
planning [19]–[21], where the small-scale representation is
used for real-time path planning and sensory data integration.
While doing so improves run-time performance, there are
still fundamental limits and scaling issues associated to the
underlying algorithms that prevent generic use across plat-
form configurations [22]. Algorithms designed to improve the
computational aspects of local planning exploit efficiencies
related to point mass or spherical robot models [23], [24]
and rely on advantageous scaling in the low-data throughput
regime that cannot handle higher resolution sensory data

[22]. Some methods also exploit the efficiency of simple
linear or polygonal footprint models for collision checking
[2]. More effective local planning modules for hierarchical
navigation involve perception space approaches, which the
stixel representation is compatible with.
Perception-Space Representations. Evidence for the value
of mid-level, perception space approaches using stereo lies in
the disparity space navigation method based on an egocylin-
der local map representation [23], [25]. Though the latency of
traditional stereo matching places constraints on operational
performance, the downstream perception-space processing is
quite efficient [26]. A depth-based approach to perception
space further showed that trajectory scoring and collision
checking with non-trivial geometric models can be processed
in real-time [3], [22], thereby improving compatibility with
the local planners of a hierarchical navigation system [22],
[27]. The results provide evidence in favor of a mixed repre-
sentation hierarchical navigation system with regards to real-
time performance and computational scalability. A review of
the stixel representation indicates that it is a sparse visual
representation mapping ground-plane contacting objects to
a 1.5D polar, ego-centric, collision-space representation.
Leveraging the processing framework of perception-space
strategies and their local planning implementations leads to
the hypothesis of this paper that: stixel-based, passive stereo
navigation will have the necessary scaling to operate on
hardware constrained systems with comparable performance
as on systems with better computational capabilities.

III. Stixel Ego-centric Perception

This section describes the integration of stixel-based mea-
surement with the core components of PiPS-based local
navigation systems, the red blocks in Fig. 1(b). Before doing
so, it first summarizes the stixel measurement process, and
reports the outcomes of comparative studies between stixels
and block matching methods regarding latency and local
collision-space recovery. Once confirmed useful for naviga-
tion, stixel-based perception space modules are described.
These modules include the storage and propagation of stixel
measurements in time, as needed by local planner modules.
It also describes how stixel measurements are compatible
with perception-space collision checking and provides timing
comparisons for critical processes using stixels. The timing
results show that stixels have the necessary scalability prop-
erties for deployment on diverse compute platforms.
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Fig. 2: Compute time and estimation accuracy. Plots the latency for different stereo depth methods and input resolutions for
(a) a workstation, and (b) an embedded device. (c) Depicts the recovered depth measuremens for BM, SGBM and stixel,
which serves to visualize their safety properties. The ranges are offset from each other for visibility. Scan completeness is
important since missing measurements (false negatives) will incorrectly predict free-space. (d) Boxplot of tests measuring
what percent of depth estimates are false positive/negatives. Stixel estimation captures more of the scene (less false negatives).

A. Stixel Estimation

Stixels generation presumes a calibrated stereo system
whose optical axes are parallel to the horizon. It uses the rel-
atively fast and robust stixel method u/v-disparity approach
[10]. There is an initial ground plane estimation pass based
on the v-disparity, followed by a stixel estimation using the
u-disparity. Additional processing to recover the stixel height
is not performed, since object or obstacle footprints provide
sufficient scene structure for navigation by ground vehicles.
Doing so reduces the stixel representation from a typically
2.5D area-based representation to a 1.5D sparse, linear one.

1) Computational Performance: To confirm the compu-
tational value of stixels with respect to the stereo-to-depth
process, this section describes latency benchmarking relative
to two baselines: Semi-Global Block Matching (SGBM)
and Blocking Matching (BM). A simulated robot (using
ROS/Gazebo) is placed in different environments and tasked
to generate a depth measurement for different input resolu-
tions and for two different compute platforms using a single-
thread. The platforms are an Intel Xeon E5-2680 workstation
(single-thread Passmark score: 1547) and an Atomic Pi Intel
Atom x5-Z8350 (Passmark: 490). The results in Fig. 2 show
that SGBM has the highest latency on both devices, and gets
close to 1s on the Atomic Pi, which means it is impossible
to support real-time sensing. BM has the lowest latencies
across the board, with stixel being a few milliseconds behind
(2-4.2ms).

2) Depth Estimation Performance: Though it might seem
like BM and stixel are comparable, they have different
properties regarding depth accuracy. For navigation, errors in
the depth map compromises safety, e.g., collision avoidance.
The previous experiments support measurement of safety
levels for the depth estimation methods. The placed robot
also measured the local scene using a simulated laser scanner
to serve as ground truth. Mapping the depth measurements to
equivalent 2D laser scan measurements permits comparison
with the laser scanner. Picking a depth error percentange
tolerance (τdepth = 3%) classifies the measurements as
correct or incorrect. There are two incorrect types: non-
existent objects estimated to exist (fale positive, FP) and
existent objects not measured (false negative, FN). A FP

measurement is generally caused by noisy estimations, occlu-
sion, and ambiguous matchings. Although the path planning
will be affected, it will not directly cause collisions. A FN
measurement may lead to collisions with unsensed objects
and is thus a good means to measure the safety level of depth
estimation. The FP and FN boxplots in Fig. 2(d) shows that
all three methods have a similar FP rate but that BM and
SGBM have a higher FN rate (and are therefore less safe).
Fig. 2(c) depicts the depth estimates for the three methods
versus the ground truth. The BM/SGBM methods do not
capture object edges as well as the stixel method, which can
lead to more collisions during navigation. In sum, the stixel is
fast to compute without compromising safety for navigation.

B. Ego-centric Perception Space
It is not sufficient to have accurate and fast depth es-

timation. Stixels used within a navigation system should
promote scalable, effective processing and decision making
for navigation. In particular, perception-space navigation is
best suited to local planning, and not to global planning.
This section describes the additional processes required to
operate within a local planner. It includes the propagation of
past measurements as well as the perception-space collision
checking module. Computational costs are compared to the
depth image equivalents.

1) Stixel Egocircle: A local planner requires the ability to
accumulate, propagate and retain recently seen information.
The perception-space equivalent to the local occupancy map
is the egocylinder [22]. Due to the sparsity of the 1.5D
stixel representation, it is only necessary to maintain and
propagate a 1D curve segment in the egocylinder, which
reduces the cylinder to a circle. This stixel egocircle has the
computational advantages of the laser-scan egocircle [27].

Stixels are converted to polar coordinates, where ρ is the
range of stixel relative to the origin of camera frame and
the angle coordinate is θ = atan(x/z), using the Cartesian
coordinates of the stixels in the conventional camera frame
(z-axis forward, x-axis to right and y-axis downward). Each
stixel is mapped to a egocircle index φcyl using the homo-
geneous egocircle projection matrix Kcyl ,

φcyl = Kcyl

[
θ

1

]
where Kcyl =

[
fh hc

]
, (1)
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Fig. 3: Egocylindrical/egocircle propagation latency.

with fh = cot(2π/ncols), hc = ncols/2, and ncols predefined
stixel egocircle resolution constants. Quantizing the angular
index bφcylc gives the egocircle polar measurement bin.

Stixel egocircle propagation shares similar processing to
that of depth imagery with some minor modifications. Define
the stixel egocircle coordinate vector pcyl = (ρ, φ, 0)T

and Cartesian coordinate vector p = (x, 0, z)T . In the
viewer/camera frame, transformations from egocircle coor-
dinates to Cartesian coordinates Te2c and vice-versa Tc2e are

p = Te2c (pcyl)

=



ρ sin(φ)
0

ρ cos(φ)



and

pcyl = Tc2e (p)

=



√
x2 + z2

atan(x/z)
0


.

(2)

Robot motion induces the camera displacement gmove, so
that each stixel propagates to p′

cyl
from pcyl according to:

p′cyl = Tc2e ◦ gmove ◦ Te2c (pcyl). (3)

The new bin for the propagated point is again based on the
quantization bφc. The stixel egocircle is like a 360◦ laserscan.

Since the stixel egocylinder maps to an egocircle based on
stixels having fixed y coordinates, propogating information
is cheaper that for the full ego-cylindrical image. Fig. 3
quantifies the propogation time cost for the stixel egocircle
versus a dense depth egocylinder for the workstation and
embedded processors. The reduction of area calculations to
linear ones gives better scaling as a function of resolution,
and can lead to an order of magnitude improvement.

2) Egocircle Collision Checking: The Planning in Per-
ception Space (PiPS) approach [3], [22] projects a halluci-
nated robot into the depth image or egocylinder to perform
collision checking in the image space. The stixel PiPS equiv-
alent compares the projected robot’s stixel footprint to the
current stixel footprints in image-space [28] for instantaneous
collision checking in the absence of memory. However,
integration with the local planning stixel egocircle, which
does have memory of past measurements, performs collision
checking in 2D polar coordinates as in [27]. Figures 4 depicts
the process. For candidate paths, the robot’s hallucinated
geometry (shown by curved green segments) is projected
into the stixel egocircle space (sensed obstacles are blue).
Robot stixel polar values indicating a range larger than the
obstacle polar values are classified as colliding and the
associated robot pose is deemed unsafe or inpermissible. The

camera FoV (brown lines)

stixel egocircle map

Fig. 4: Stixel-space collision checking showing valid robot
trajectory poses (green) and colliding poses (red).

robot will collide if it were to follow the candidate path.
Importantly, the collision checking policy applies to different
robot geometries. In the case of stixels, the robot’s volume is
projected down to a planar footprint that gets mapped to the
egocircle during collision checking. The egocircle partially
resolves limited FoV issues by permitting collision checking
in static worlds if the non-FoV region was recently sensed.

For images, robot volumes project to areas in the standard
depth image/ego-cylinder approach so that collision checking
scales with area. For a fixed vertical resolution, the ego-
cylinder will scale linearly with the angular resolution. Since
there is no vertical coordinate, the stixel ego-circle scales
linearly. Fig. 5 plots the collision checking time for one pose
versus different stixel egocircle or depth egocylinder resolu-
tions on the workstation and Atomic Pi. The boxplots indicate
that stixel egocircle collision checking scales linearly and
operates faster than depth ego-cylinder collision checking.

IV. Global Path Follower Hierachical Navigation

The publicly available move_base package in ROS/Gazebo
provides good baseline implementations for global and local
planning. However, it maps the outcomes to instantaneous
velocity commands, binding the fastest rate to the local
planning rate. A better hierarchy has one additional time-
scale that tracks local trajectories and operates faster than
the local planning rate. The trajectory tracking process can
exploit the low latency of PiPS collision checking to operate
at a faster rate. This section describes the global path follower
(GPF-X) navigation system with the additional scale level;
blue blocks in Fig. 1(b). It consists of two main modules, the
first of which consists of the trajectory synthesis, trajectory
tracking, and state manager blocks, and corresponds to the
GPF abbreviation. The second consists of the local planner
block, which can flexibly be any perception-space compatible
local planning system. The X is a placeholder for the local
planner, two of which are described here.

A. System Overview
At the lowest trajectory tracking level, feedback control

is applied to track the current synthesized trajectory, and the
remaining future trajectory is collision checked in perception-
space to confirm future safety. If the trajectory is unsafe,
then a signal gets sent to the state manager indicating as
much. Likewise a signal is sent when the trajectory segment



Ti
m
e
(µ
s)

in
Lo

g
Sc

al
e

Resolution Resolution Resolution Resolution
(a) (b) (c) (d)

Stixel, Workstation Depth, Workstation Stixel, Atomic pi Depth, Atomic pi
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has been almost fully tracked. The state manager handles
global and local re-planning plus manages the switched state
of the system (global following versus local synthesis). State
update consequences are transmitted to the global and local
planners.

The global planner block operates much like the standard
global planners. It finds a global path based on the current
map, which gets updated based on the stixel measurements.
When triggered, new global paths are recomputed based
on the provided robot and specified goal poses. Skipping
the local planner details for now, the trajectory synthesis
takes a candidate path and synthesizes a dynamically-feasible
trajectory from the path if it is not a fully specified pose and
control trajectory. Synthesis involves simulating a trajectory
tracking feedback controller along the candidate path. If the
trajectory requires violating velocity or control constraints,
then the state manager will be informed to trigger local
synthesis.
When the system is global following, the local planner

passes along a short segment of the global path for trajectory
synthesis. Prior to doing so, it checks whether the global path
sends the robot backwards. If so, it will trigger the state
manager to switch to local synthesis mode. This is to avoid
reversing into potentially unknown obstacles. When the state
is local synthesis, the local planner will engage a short-term,
local planner at the scale of the egocircle sensing radius. This
process continues until the robot converges onto the current
global path and triggers a state switch to global following.

B. Local Planner

This section sketches two perception-space GPF compati-
ble planners inspired from [3], [27]. They process the stixel
ego-circle to identify a candidate direction of travel, from
which is synthesized a local trajectory. Both rely on the
detection of navegable gaps per [27].

1) PiPS Ray: The PiPS ray (PR) local planner modifies
[3] to operate as a local planner. Rather than contemplate a
fixed set of forward paths, it uses the detected gaps to estab-
lish a preferred direction of travel towards the most promising
gap. A local goal is established at the gap and a fixed set
of single-segment Dubins paths directed towards the local
goal are synthesized. The paths are scored and collision-
checked, with the best collision-free trajectory chosen. Fig.
6(a) depicts a single snapshot of the PiPS ray selection

(a)

goal
(b)

goal

Fig. 6: Perception-space local planner visualization (left:
PiPS ray, right: Potential-Gap). The black arrow is the local
goal. Red curves and green curves are gaps found, with
green indicating the selected gap. The final local trajectory
is yellow.

process.
2) Potential-Gap: The potential gap (PG) local planner

selects the one gap that optimizes a hypothesized cost-to-go,
then builds a local potential whose vector field attracts the
robot to the local goal and repulses it from nearby egocircle
obstacle points. The gradient assumes a holonomic robot, but
the tracking controller is nonholonomic. The small spatial
scale of the problem prevents some of the issues of potential
methods from arising. Fig. 6(b) depicts a single snapshot of
the Potential-Gap trajectory synthesis process.

V. Experiments

A. Environment and Benchmark Setups

Monte Carlo runs test the performance of stixels versus
block matching, as well as stixels with different planners,
on a workstation and an embedded device in both cases. The
tests are performed in ROS/Gazego simulation environments.
There are 4 different scenarios to accomplish benchmarks.
Three of them are the sector, campus and office worlds from
[22] with good surface features. We also have an additional
scenario (dense) that spawns many obstacles in a 20x20
empty world. The minimum distance between two obsta-
cles is a parameter controlling the obstacle density of the
environment. An additional variable testing the algorithms’
ability to navigate with different robot shapes selects from
two different platforms, a cylinder-shaped Turtlebot and a
differentrial-drive robot the shape of the Pioneer3 [22] called
“Box Turtle.” Since the size of the Box Turtle differs from the
Turtlebot, we enlarge the minimum obstacle distance from
1m (Turtlebot) to 1.5m (Box Turtle) in the experiments. The



TABLE I: Success rate for Turtlebot on Workstation/Atomic Pi.

Method DW CW OW SW
BM Laser TEB 98 82 96 90
Stixel Laser TEB 94 90 100 98
Stixel GPF PR 100 98 100 100
Stixel GPF PG 100 100 98 100

DW CW OW SW
92 48 64 88
84 56 52 90
92 94 98 96
94 98 98 100

TABLE II: Box Turtle on workstation/Atomic Pi.

DW CW OW SW
100 92 90 92
100 92 94 92
100 96 96 92
100 98 100 98

DW CW OW SW
100 50 54 86
100 62 50 84
100 94 94 88
100 96 96 88

maximum number of obstacles for dense world is 500 and
for the rest is 50.
The benchmarks are performed with four different nav-

igation approaches, BM laser TEB, stixel laser TEB, stixel
GPF-PR and stixel GPF-PG. TEB stands for ROS move_base
hiearchical navigation with the TEB local planner. TEB ac-
cepts laserscan as the sensor input, which is easily generated
from stereo BM and stixel estimation depth measurements.
Each scenario and navigation method is run 50 times. The
success rate is computed from these runs. The same bench-
mark is applied for the workstation and the Atomic Pi. SGBM
is not used since it does not run in real-time on the Atomic
Pi. In order to consistently assess collision-free operation,
all methods are bound to the 7Hz stixel compute rate of the
Atomic Pi. For TEB, this rate applies to the local module.
For GPF-X, it applies to the following module. For even
comparison, we also use 7Hz on the workstation though some
of the methods can run much faster, especially GPF-X.

B. Benchmark Results and Discussions

Tables I& II give the success rate of Turtlebot and Box
Turtle with different navigation approaches on different
hardware. The stixel GPF-X methods have high success
rates across the board, whereas move_base TEB cannot
perform well on the Atomic Pi with different sensor inputs,
especially in the campus and office scenarios where the
paths to navigate are longer. The table provides evidence
in support of the paper’s hypothesis. To measure this more
concretely, Fig. 7 quantifies the performance gap between
the workstation results and the Atomic Pi results for the
different worlds and robot platforms. The mean values across
the navigation scenarios for the workstation are also noted.
The GPF-X methods have a change in success rate of less
than 5%, while TEB is around 20%. The horizontal lines in
the figure are the 95% confidence intervals for the aggregate
TEB and GPF-X scores. GPF-X is more consistent across
the two compute devices.

The high success rate for Box Turtle indicates that stixel
GPF-X can handle non-circular robot geometries. Looking at
TEB for the workstation, stixel laser TEB has a higher aver-
age performance than BM laser TEB. It suggests translation
of the improved safety of stixel estimation to navigation.

1) Timing: To test the earlier assertion that GPF-X better
exploits perception space timing, Fig. 8 shows the distribu-
tion of TEB and GPF-X with stixel measurements on the
Atomic Pi. TEB is bound to the local planner rate, which has
a high latency (120ms mean) and high variance. In contrast,
GPF-X is bimodal with the majority of the cases being spent
in the low latency, perception-space path confirmation mode
(30ms mean), which performs efficient collision checking

BT ST SR SG BT ST SR SG

91.5 95.5 99.5 99.5 93.5 94.5 96.0 99.0
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Fig. 7: Performance gap between Workstation and Atomic
Pi.

(a) (b)time (ms) time (ms)

TEB GPF-X

Fig. 8: Time distribution of navigation for stixel TEB and
GPF-X on the atomix pi. Bars are the histograms of timing
and continuous lines are the smoothed time distributions. (a)
TEB (b) GPF-X with split timing histograms for planning
and following stages, and combined time distribution.

along the current trajectory. The fast confirmation times
enhance navigation safety, by enabling faster switching to
local planning mode and global replan triggering. Only a
small percent of the time is spent in local planning mode
(6.5% total, in red). It has a slightly lower run-time (113ms
mean) than TEB planning.

GPF-X has nice bimodal latency properties, whereas the
TEB hierarchical navigation framework is unimodal and
limited to how low the local planner can be in time/latency.

VI. Conclusion
The stixel representation has been utilized in assisting

autonomous vehicle detection algorithms, but has not been
explored as a free-space sensing modality. This paper ex-
tended the ego-centric PiPS representation to stixels and
derived a low latency stixel-based module for perception-
space planning. The sparse representation of stixels permits
fast, scalable feasibility checking within the perception space
for different robot geometries, and fast temporal propagation
of historical readings. When integrated into a hierarchi-
cal navigation system attuned to perception-space planning,
stixels demonstrate more consistent navigation performance
across different compute platforms. The consistency arises
from the bimodal properties of properly designed perception-
space local navigation modules.
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