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Abstract— This paper extends the gap-based navigation tech-
nique in Potential Gap by guaranteeing safety for nonholonomic
robots for all tiers of the local planner hierarchy, so called
Safer Gap. The first tier generates a Bézier-based collision-
free path through gaps. A subset of navigable free-space from
the robot through a gap, called the keyhole, is defined to
be the union of the largest collision-free disc centered on
the robot and a trapezoidal region directed through the gap.
It is encoded by a shallow neural network zeroing barrier
function (ZBF). Nonlinear model predictive control (NMPC),
with Keyhole ZBF constraints and output tracking of the Bézier
path, synthesizes a safe kinematically-feasible trajectory. Low-
level use of the Keyhole ZBF within a point-wise optimization-
based safe control synthesis module serves as a final safety layer.
Simulation and experimental validation of Safer Gap confirm
its collision-free navigation properties.

I. INTRODUCTION

The local planner module in a hierarchical navigation
system processes sensory data to perceive the local envi-
ronment and represent it as needed by planning and con-
trol algorithms. Gaps are such representations, which were
shown to support collision-free navigation of idealized robots
based on artificial potential fields (APF) [1]. The method,
called Potential Gap generates safe trajectories guiding the
robot through its ego-centric free space toward local gap-
based goals. Safety guarantees hold for point-mass holo-
nomic robots but not for nonholonomic robots. Additional
robustification mechanisms were added to improve forward
invariance of the safe space prescribed by the APF. Formal
safety guarantees were lost and passage through gaps was
compromised. This paper extends gap-based local planning
safety guarantees to nonholonomic models.

Safety relies on adequately modeling the collision-free
space of the robot. Fig. 2 depicts such a region specialized to
the gap between two obstacles. It is represented by the union
of the largest robot-centered disc and the region between the
gap lines. Also depicts is the inflated free area, in dark gray,
due to the robot’s physical footprint. To use zeroing barrier
function (ZBF) safe control synthesis, the free space must be
represented by a continuously differentiable implicit function
positive inside the safe region and negative outside (the zero
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level-set defines the boundary). As safe region resembles the
shape of a “keyhole”, we will call the ZBF a Keyhole ZBF.

The hierarchical navigation system, depicted in Fig. 1,
relies on a global planner to generate a candidate path to
the goal in the world map. The Safer Gap local planner
reacts to local unknown environments and achieves obstacle
avoidance. First, a smooth collision-free path based on Bézier
curves is generated from detected gaps. If the Bézier curve
control points are contained in the Keyhole ZBF boundary,
then the curve is also contained in the same region [2];
thus, the path is guaranteed to be collision-free. Nonlinear
model predictive control (NMPC) is applied to track that
path under kinematic feasibility constraints. To guarantee
safe path tracking, the Keyhole ZBF is transcribed as a hard
constraint in NMPC. Finally, as a last measure of safety to
cope with the rapidly changing environment and the slower
rate of NMPC, the Keyhole ZBF is enforced in a control BF
(CBF) point-wise optimization safe control synthesis.

The contributions and organization of Safer Gap as anno-
tated in Fig. 1 (dashed) are: (i) Joined Bézier path generation
(§III-A) guarantees safety and kinematic passibility through
gaps. (ii) The real-time synthesized Keyhole ZBF (§III-C)
models the safe keyhole region. NMPC trajectory tracking
(§III-B) with Keyhole ZBF constraint and nonholonomic
dynamics synthesizes safe trajectories. (iii) The Keyhole
ZBF acts as a CBF (§III-D) to ensure safety at the lowest
level. Simulation benchmarking and real experiments in §IV
confirm Safer Gap’s collision-free properties.

II. RELATED WORK

A. Vision-based Planning

Vision-based navigation in unknown environments has be-
come popular nowadays. Perception acts as the first module
in navigation frameworks. It is important to efficiently and
accurately describe environments for safe path planning and
control. Perception can be generally categorized into allo-
centric and ego-centric approaches [3]. Within the human’s
neural hierarchy, ego-centric processing usually happens be-
fore allocentric estimation. It needs fewer memory resources
and is computationally efficient in depicting the local region.

Gap is one of the ego-centric methods that can model
locally free space and leverage line-of-sight visibility. Al-
though there is no formal definition of the “gap”, it is
usually a segment of 1D laserscan measurement, and consists
of starting and ending points to represent the collision-
free region [1], [4]–[9]. Path planning with gaps should be
able to improve safety and passibility. Especially, Potential
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Fig. 1: Hierarchical navigation system with Safer Gap local planner. Red blocks are perception module to generate egocircle. Blue blocks are planning
modules. Green block is the control module.

Gap local planner [1] proves safety guarantee for point-
mass holonomic robot models. It includes radial extension
and projection operator to enhance safety for nonholonomic
mobile robots. However, the closed-form proof does not hold.

After modeling environments, the next step is planning
a collision-free path within the perception space. Dijkstra’s
algorithm, A?, D?, D? Lite, and AD? [10]–[14] are graph
search planning methods in costmaps. PRM, RRT, and
RRT-X [15]–[18] are sample-based planners that search for
collision-free paths in the workspace. These are generally
used as global planers. Reactive policies such as EB, DWA,
TEB and egoTEB [9], [19]–[21] generate local plans to avoid
obstacles and approach to goals.

In addition, artificial potential field (APF) offers fast
computation for obstacle avoidance [22]–[26]. Potential Gap
local planner [1] uses APF to synthesize safety guaranteed
paths for point-mass holonomic models. Also, Bézier curve is
a well-known technique to generate smooth trajectories for
different robot models [27]–[32]. Our recent work, Bézier
Gap [33], leverages the property of Bézier curve to syn-
thesize safe trajectories for holonomic quadrupedal robots.
However, there is no safety guarantee for nonholonomic
models in planning. Consequently, it motivates the research
to leverage the advantages of gaps and Bézier curves for
nonholonomic path planning.

B. Nonlinear Model Predictive Control
Model predictive control (MPC) is a receding-horizon

controller that can be used for both generating or tracking
trajectories [34]. For the latter, trajectories are typically
generated by a different module that uses a simplified model
of the system to allow for fast trajectory generation. In
particular, [35], [36] demonstrates the efficacy of NMPC
for path and trajectory tracking for nonholonomic robots,
supporting the utility of NMPC for local planning. Further,
enforcing safety constraints in a MPC fashion leads to
unconservative safe trajectories.

C. Safety and Control
In recent years, safety in control systems has been incor-

porated via invariant set theory analysis. To ensure safety

for a particular set, e.g., free space set F in navigation
applications, one needs to prove that F is an invariant set.
The safe set is typically represented by the zero sublevel
set of a continuously differentiable implicit function, termed
barrier function, h(x) : Rn → R.

F = {x ∈ Rn | h(x) ≥ 0 } (1)
∂F = {x ∈ Rn | h(x) = 0 } (2)

where, ∂F denotes the boundary of the set.
Further, for controlled systems, the control barrier function

(CBF) is introduced, for which the control action of the
system must render the safe set invariant. The traditional
implementation of CBF-based control takes place at the
last tier of the control system hierarchy in the form of a
point-wise optimization problem that seeks to synthesize
safe control actions by satisfying the CBF constraint while
minimally deviating from the base controller output [37]. If
the system dynamics are control affine, the aforementioned
optimization problem will take the form of a quadratic
program (QP).

min
u

||u− ur||2

s.t. ∇hT (x)f(x) +∇hT (x)g(x)u ≥ −γh(x)

umin ≤ ui ≤ umax, ∀i = 1, · · · ,m

(3)

where, ur ∈ Rm is the output of the base controller, f(x) :
Rn → Rn and g(x) : Rn → Rn×m are the system dynamics
matrices, γ tunable positive parameter, and umin and umax

are actuation limits.
However, CBF-based full safe trajectory synthesis has

been investigated in [38] and [39]. In the former, the CBF
constraint is elevated into a state differential equation facil-
itating the utilization of traditional control techniques, e.g.,
LQR and pole placement. In the latter, a discrete form of
the CBF constraint in (3) is added to a discrete NMPC
formulation. But the resulting safe trajectories are similar to
those obtained from discrete NMPC with BF constraint with
inflation of the boundaries. As a result, in this work, the
Keyhole ZBF will be added as a discrete position constraint
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Dashed lines show the Bézier polygons. The combination of brown and
cyan paths is the final synthesized path.

in NMPC formulation for trajectory tracking, as will be
discussed in the next section.

To guarantee the existence of solutions to CBF-QP in
(3), h(x) must be a valid CBF, which is usually difficult
to certify and can only be done offline. Sum-of-squares is
one technique to solve for the polynomial coefficients of
h(x) [40]. Similarly, Hamilton Jacobi (HJ) based reachability
analysis can be used to generate a safe backward-reachable-
set, which can be used as a CBF [41], [42]. Since both
of those methods require offline computation, it is difficult
to deploy them in changing environments, although some
techniques have been proposed to synthesize safe trajectories
from a library of offline-computed reachable sets [43], [44].

III. Safer Gap LOCAL PLANNER

This section introduces a gap-based local planning policy
to guarantee safe navigation for nonholonomic mobile robots,
so called Safer Gap. It incorporates line-of-sight visibility
from gap detection to construct collision free space. Then
safety and passibility are maintained during the design of
path planning and motion control.

A. Joined Bézier Path Planning

In our previous work [1], [33], gap-based perception space
and Bézier-based trajectory synthesis are demonstrated to
have good navigation performance. However, safety is only
guaranteed for the holonomic robot model. We propose to
synthesize smooth and safe paths from gaps based on joined
Bézier curves. Gap depicts the open region between two
obstacles by considering robot’s line-of-sight visibility, as
shown in Fig. 2. It is generated from egocircle and follows
the same procedure in [1]. The egocircle [3] is an ego-centric
1D array that contains spatial and temporal information of
the environment.

1) Collision-free space generation: Similar to [33], a
collision-free space F is geometrically constructed for each
gap. However, triangle regions constructed in [33] are too
compact when one side of the robot is close to an obstacle;
thus, a richer polygonal space should be created. The largest
circular collision-free space Gcirc within egocircle L is
found, e.g., red circle in Fig. 2. Two gap points, lgap and rgap,
are initially connected to the tangent points of Gcirc. The raw
gap sides are formulated. To be noticed, the tangent point
corresponding to lgap always has smaller polar angle than
rgap in the robot local frame. If raw gap sides are obstructed
by other obstacles, inward rotations are applied about lgap
(clockwise) and rgap (counter clockwise) until there is no
obstruction. The maximum rotation can push the tangent
point to the center of Gcirc, which constructs a minimum
collision free space F , which is the same as [33]. After
rotation, the gap sides, Ll and Lr are finalized. We define
the intersections between L and Gcirc are Ql and Qr. Two
gap points and two intersected points formulate a collision
free polygon Gpoly. The full collision free space F is

F = Gpoly ∪Gcirc (4)

Considering robot geometry, F is inflated as F inf in Fig. 2.
The inflation size is a function of robot radius. Intersected
points after inflation are denoted as Qinf

l and Qinf
r . Inflated

gap circle is Ginf
circ. Any path P within the inflated collision

free space P ∈ F inf can guarantee safety for the full robot
geometry.

2) Joined Bézier curves: The first segment is a cubic
Bézier curve parameterized by u inside Ginf

circ,

B1(u) =

n=3∑
i=0

(
n

i

)
(1− u)n−iuib

(i)
1(

n

i

)
=

n!

i!(n− i)!
, 0 ≤ u ≤ 1

(5)

where b
(i)
1 is the ith control point of B1.

Since the gap is detected in robot local frame, robot
center is used as the first control point b

(0)
1 = p(0). An

intermediate point pcirc is defined on the arc between Qinf
l

and Qinf
r , and served as the last control point b

(3)
1 . The

other two control points are designed from initial orien-
tation θ(0), linear velocity ν(0), and acceleration ~a(0) of
the nonholonomic robot. b

(1)
1 − b

(0)
1 is co-linear with the

unit orientation vector ~o(0) = [cos(θ(0)), sin(θ(0))]. Curve
velocities and accelerations are obtained from the first and
second derivatives of cubic Bézier curve,

Ḃ1(u) = 3

2∑
i=0

(
2

i

)
(1− u)2−iui(b

(i+1)
1 − b

(i)
1 ) (6)

Ḃ1(0) = 3(b
(1)
1 − b

(0)
1 ) (7)

B̈1(u) = 6

1∑
i=0

(
1

i

)
(1− u)1−iui(b

(i+2)
1 − 2b

(i+1)
1 + b

(i)
1 )

(8)

B̈1(0) = 6(b
(2)
1 − 2b

(1)
1 + b

(0)
1 ). (9)



The curve parameter u ∈ [0, 1] should be scaled to time
t ∈ [0, T1] and t = T1u. The final time T1 is estimated
by ||pcirc − p(0)||/νd, where νd is the robot desired linear
velocity. Then the scaled Bézier path Bs1(t) = B1(t/T1), and

Ḃs1(t) =
1

T1
Ḃ1(

t

T1
) (10)

B̈s1(t) =
1

T 2
1

B̈1(
t

T1
). (11)

Set ||Ḃs1(0)|| = ν(0), which needs ||b(1)1 − b
(0)
1 || =

T1ν(0)/3. Then set B̈s1(0) = ~a(0), all control points for
the first Bézier path segment B1(u), u ∈ [0, 1] are uniquely
defined

b
(0)
1 = p(0)

b
(1)
1 = p(0) +

T1ν(0)

3
~o(0)

b
(2)
1 =

T 2
1

6
~a(0)− b

(0)
1 + 2b

(1)
1

b
(3)
1 = pcirc

(12)

The second path segment is generated from a quadratic
Bézier curve

B2(u) = (1− u)2b
(0)
2 + 2(1− u)ub

(1)
2 + u2b

(2)
2 . (13)

where b
(0)
2 = pcirc.

G1 continuity maintains a smooth connection between
Bézier curves. Therefore, the direction vector ~v should
satisfy the equality:

~v =
b
(1)
2 − b

(0)
2

||b(1)2 − b
(0)
2 ||

=
b
(3)
1 − b

(2)
1

||b(3)1 − b
(2)
1 ||

(14)

The magnitude of b(1)2 − b
(0)
2 is calculated by desired linear

velocity νd. With quadratic Bézier curve and similar scale
mechanism,

Ḃ2(u) = 2(1− u)(b
(1)
2 − b

(0)
2 ) + 2u(b

(2)
2 − b

(1)
2 ) (15)

Ḃ2(0) = 2(b
(1)
2 − b

(0)
2 ) (16)

Ḃs2(t) =
1

T2
Ḃ2(

t

T2
) (17)

where T2 = ||pwpt − pcirc||/νd.
Similarly, set ||Ḃs2(0)|| = νd, which requires ||b(1)2 −

b
(0)
2 || = T2νd/2. When pcirc is close to Linf

l or Linf
r , b(1)2 is

possible to be outside of the inflated gap sides after scaling.
A length scale number λ ∈ (0, 1] is calculated to bound b

(1)
2

inside F inf. All control points for the second Bézier path
segment B2(u) are constrained

b
(0)
2 = pcirc

b
(1)
2 = pcirc + λ

T2νd
2

~v

b
(2)
2 = pwpt

(18)

Local waypoint pwpt candidates are initially found based
on global plans and then bounded by F inf. The intermediate
point pcirc starts with the middle point of the arc, then is
biased by the relative position between p(0) and pwpt to

Fig. 3: Joined Bézier paths for all gaps. Blue is egocircle L. Yellow are
5 detected gaps. Green points are local waypoints pwpt. Black paths are
the synthesized Bézier paths P . Red path is the selected P∗ based on the
scoring equation.

synthesize smoother paths. If pwpt is within Ginf
circ, only first

Bézier segment is computed. The final Bézier-based path is

P(u) =

{
B1(u), pwpt ∈ Gcirc

B1(u) ∪ B2(u), otherwise
(19)

From the above design, the first Bézier polygon for B1(u)
is always within Ginf

circ. The second Bézier polygon is within
the convex region Ginf

poly. Therefore, the joined Bézier path is
inside the inflated collision free space, P(u) ⊆ F inf. Safety
and passibility are achieved for nonholonomic robots. It only
takes ≤ 2ms to generate path for each gap (on Intel i7-
8700). The full path planning time depends on the number
of detected gaps. A set of new paths are synthesized in every
planning loop.

3) Path scoring: A scoring function is computed for each
joined Bézier path to choose the best executed one P∗.
This function is an improved version from [1] by adding an
orientation cost. The path has lower deviation from robot’s
orientation is preferable, since nonholonomic robots cannot
suddenly turn backwards. It is also helpful to pick the correct
path when the final goal point is on the other side of walls.

J(P) =
∑
x∈P

C(d(x,L))+w1||xend−p∗||+w2|θend−θ(0)|

where C(d) =

 cobse
−w2(d−rins), d > rins

0, d > rmax

∞, otherwise

d(x,L) is the distance from path pose x = [x1, x2, θ]T to
the nearest point on egocircle L. ||xend − p∗|| measures
the distance between the end pose of P and the local
goal p∗ from a global plan. |θend − θ(0)| is the angle
difference between end pose and initial pose. rins and rmax are
proportional to the robot radius to control the safe distance.
w1, w2 and cobs are tunable weights. Each time, every best
path P∗i compares with the previous executed path P∗i−1 to
decide whether switching to the new path. One example is
shown in Fig. 3. The best path (red) is selected from a set
of Bézier path candidates.



B. NMPC Trajectory Tracking

Safe joined Bézier path P∗ is generated in §III-A. In order
to safely track the path for nonholonomic model, NMPC is
applied. Assume the unicycle nonholonomic model with state
x = [x1, x2, θ]T and control u = [ν, ω]T .

ẋ1 = νcos(θ)

ẋ2 = νsin(θ)

θ̇ = ω

(20)

In order to assign time stamps to path P∗ based on non-
holonomic dynamics, near-identity trajectory xref(t) [45] is
synthesized given the path and desired linear velocity νd.
Time stamps and the velocity profile uref are assigned to
the dynamically feasible trajectory reference. However, it is
possible to slightly deviate from the original Bézier path.
NMPC with the safety Keyhole ZBF constraint can guarantee
safety during tracking. The scheme is formulated with initial
state x(t) and control u(t) at current time t:

min
u(t+k)

J(t) =

N−1∑
k=0

||x(t+ k)− xref(t+ k)||Q

+ ||u(t+ k)− uref(t+ k)||R
s.t. x(t+ k + 1) = f(x(t+ k),u(t+ k))

ulb ≤ u(t+ k) ≤ uub

alb ≤ |u(t+ k + 1)− u(t+ k)| ≤ aub

h(x(t+ k)) ≥ 0

(21)

where ||z||Q = zTQz, and ulb, alb, uub, and aub are the
lower and upper bounds of velocities and accelerations to
maintain smooth motions. N is the number of time step in
the prediction horizon. Q and R are the state and control
weights. h(x) is the Keyhole ZBF, which represents the
inflated collision-free space F inf.

C. Keyhole ZBF Synthesis

The inflated collision-free space F inf is captured by the
zero level-set of the Keyhole ZBF. We will use a shallow,
two-layer neural network with rectified linear units (ReLU)
to model the barrier function. In order to keep the network
shallow and minimal, we need to leverage the geometry of
keyhole shape, i.e., the straight lines and the circle. The
complete expression of the Keyhole ZBF is

h(x) = α1R1 + α2R2 + α3R3 + α4Rc + α5R1R2

+ α6RcR1 + α7RcR2 + α8RcR3

+ α9R1R2R3 + α10R1R4R5 + α11R2R4R5

+ α12RcR1R4 + α13RcR2R4 + α14RcR1R2

+ α15RcR1R2R3 + b
(22)

Effectively, all points in the domain are mapped onto the
level-sets of the line and circle equations (layer 1) and their
polynomial combinations (layer 2). Any point that maps onto
a negative level-set is set to zero by the ReLU. As shown
in (22) by the subscripts of R, three additional straight lines

line 3

line 1

line 2

(a)

line 3

line 1
line 2

line 4
line 5

(b)
Fig. 4: Keyhole diagram with additional virtual lines.

are added, line 3, 4, and 5. Fig. 4-a shows an illustrative
example of the keyhole shape with line 3, which connects
points Qinf

l and Qinf
r . Lines 4 and 5 were added to cope with

a special keyhole configuration shown in Fig. 4-b. where,
x = [x1, x2]T , Ri = ReLU(cTi x + di), Rc = ReLU(r2 −
(x − xc)T (x − xc)), ReLU(z) = max(0, z), ci and di are
the coefficients for the straight lines, and xc and r are the
center and radius of Ginf

circ, respectively.
The synthesis process for the ZBF (i.e., training of the

neural network) follows the technique presented in [46],
which is a linear program (LP). The LP needs sampled sets,
X u and X s, from the unsafe and safe regions, respectively.
The unsafe points are sampled along the gap lines and circle
edge, excluding the arc between the gap lines. The safe points
are generated from the unsafe point by pushing them along
the gradient inwards an ε distance. ε then should be set to a
small value, e.g., 3% of the circle radius. The linear program
for learning αi and b coefficients is

min
u

~1Tα

s.t. h(xi) ≤ −1, ∀i ∈ { l : xl ∈ X u }
h(xj) ≥ +1, ∀j ∈ { l : xl ∈ X s }
b ≤ 0, αk ≥ 0, ∀k = 1, · · · , 15

(23)

where ~1 = [1, · · · , 1]T and α = [α1, · · · , α15]. The coef-
ficients αi have a positivity constraint while the b has a
negativity constraint. Those constraints are needed so that the
cost function acts as L1 regulation, which promotes sparsity
in the solution. Also, the value constant ±1 affects the
scaling of the ZBF, much like for support vector machines.
The synthesized Keyhole ZBF for the examples given in
Fig. 4 are shown in Fig. 5.

The linear program was solved using Google OR-Tools
[47] in C++. For 2000 runs on the development machine
(Ubuntu 20.04, Intel i7-8750H CPU), the maximum, mini-
mum, and average execution times were 1.6 ms, 0.71 ms,
and 0.75 ms, respectively.

1) Keyhole ZBF suitability as a CBF: The Keyhole ZBF
meets the requirements to be used as a CBF. It is monotonic



(a) (b)
Fig. 5: Keyhole ZBF for configurations in Fig. 4. The value of the ZBF is
represented by the color map, and the zero level-set of the ZBF is depicted
by the yellow dashed line. The unsafe region outside the ZBF boundary has
a negative value.

across the boundary and differentiable everywhere in the
positive region. The neural network in (22) has no dead
gradient, given that the terms are multiplicative combinations
of the line and circle equations. Although due to the ReLU,
the gradient may be non-smooth, it is not a problem for
optimization, as subgradients can be used.

D. Keyhole Control Barrier Function

Since the domain of the Keyhole ZBF will be the position
of the robot (excluding orientation), a single integrator model
is assumed for the robot in CBF-QP. The reference control
command is the instantaneous translational velocity of the
robot, i.e., ur = [νr cos θ, νr sin θ]T . Again, the subscript
r denotes the outputs from the reference controller, which
NMPC in this case. The calculated safe velocity commands
by CBF-QP (3), u = [ẋs, ẏs]

T , are mapped to the robot
commands using (24) and (25). ∆θ is the angle difference
between the vectors ur and u and is added to the current
rotation rate to correct the angle difference. kω is a positive
tunable parameter. The translational velocity is damped down
proportional to the ratio of ∆θ to a maximum angle θmax.
If |∆θ| ≥ θmax, the robot will only rotate.

ω = ωr + kω∆θ (24)

ν = max

(
0, 1− |∆θ|

θmax

)
||u|| (25)

Overall, the Safer Gap local planner is designed to
maintain safety and passibility for nonholonomic mobile
robots. From joined Bézier path planning, NMPC trajectory
tracking with Keyhole ZBF, and control barrier function,
safety guarantee is proved.

IV. EXPERIMENTS

To test navigation performance with Safer Gap, simulation
benchmark and real robot experiments are conducted.

A. Simulation Benchmark

1) Simulation Configuration: We benchmarked Safer Gap
local planer in ROS with move base hierarchical navigation

system. The benchmark is performed in both STDR and
Gazebo simulators. STDR uses 1st order circular nonholo-
nomic model with 360◦ Field-of-View (FoV) laser scanner.
In Gazebo, Turtlebot is used as the 2nd order nonholonomic
mobile robot with limited 60◦ FoV. We setup four different
scenarios [3] in Fig. 6 for benchmark: sector, dense, campus,
and office. They simulate multiple navigation environments,
e.g. hallway, open area with obstacles, campus roads and
etc. The obstacles are randomly spawned in the scenarios
with a minimum distance to each other as 1m. Robot start
and end poses are also randomly chosen in the designated
areas. Ground truth robot locations are used for navigation.
We have 50 Monte Carlo runs for each scenario to quantita-
tively compare Safer Gap (SG) navigation performance with
Potential Gap (PG) which serves as the baseline method.
Radial extension and projection operator are enabled in PG
for nonholonomic robot.

2) Evaluation Metric: Success, abort and collision rates
are collected for each planner. Success means that the robot
can successfully reach the goal. Abort represents that the
robot cannot have any possible plan to the goal after recovery
behavior. Collision is counted whenever a colliding happens.

3) Simulation Results: The overall simulation results of
STDR and Gazebo are in Table I and II. The comparison
of success rates is in Fig. 7. Both PG and SG have 100%
success rates in STDR with full sensing of the environments.
However, when simulating 2nd order nonholonomic model
with limited FoV, PG’s success rate drops 9% including 8%
aborts and 1% collisions.

From the full results of 4 Gazebo scenarios in Table III,
PG does not perform well in the hallway and campus roads.
The robot navigates back and forth, and is stuck to find
successful paths to the goal. The projection operator in PG
conservatively keep safety by sacrificing passibility. Due to
the limited FoV, the PG still has collisions when all nonholo-
nomic extensions are enabled. Our proposed local planner SG
not only maintains safety, but also leverages the line-of-sight
visible gaps for passibility. This comparison demonstrates
safety guarantee for nonholonomic mobile robots in the
design of Safer Gap.

4) Computational Efficiency: The benchmark is per-
formed on a workstation with Intel i7-8700. CasADi opti-
mization framework is used for solving NMPC. We set the
number of horizon N = 6. The total time of each control
loop is averaged as ∼ 75ms, including Bézier path synthesis,
keyhole generation, NMPC optimization, and CBF-QP. Real
time application is achievable.

B. Real Experiments

The simulation benchmark quantitatively compares Safer
Gap navigation performance with Potential Gap, and
presents the outperforming results of our proposed work.
In this section, the planner is applied on the real platform,
LoCoBot, to navigate through unknown environments. It
has a Kobuki base with nonholonomic dynamics. Robot’s
odometry provides the pose information. RealSense D435i



Sector Dense Campus Office
Fig. 6: Four simulation scenarios. In sector and campus worlds, start region/poses (red) and end region/poses (green) are labeled. In the dense world, robot
navigates from top to bottom. In the office world, the start and goal poses are randomly chosen from the red points.

TABLE I: STDR Simulation Benchmark
(1st order nonholonomic model)

Total Success Abort Collision
PG 100% 0% 0%
SG 100% 0% 0%

TABLE II: Gazebo Simulation Benchmark
(2nd order nonholonomic model)

Total Success Abort Collision
PG 91% 8% 1%
SG 100% 0% 0%

Fig. 7: Success rates comparison between PG and SG.

TABLE III: Simulation results in 4 Gazebo scenarios

Sector Dense Campus Office
Success Abort Collision Success Abort Collision Success Abort Collision Success Abort Collision

PG 100% 0% 0% 100% 0% 0% 84% 16% 0% 80% 16% 4%
SG 100% 0% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%

Low Density

Start Goal
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Start Goal

High Density

Start
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Fig. 8: Real experiment topview. Three environment densities are shown. The green paths are the robot’s real traces. Robots start from left to the right.

depth camera initially produces depth images that are con-
verted to laserscan measurements through a ROS package
depthimage to laserscan [48].

We test Safer Gap local planner in five scenarios with
different obstacle densities from low to high in Fig. 8. The
robot navigation traces are depicted on the top-view figures.
For each configuration, 2 runs are repeated to show consistent
results. We have 100% success rate in totally 10 trials, which
is the same as simulation. Therefore, Safer Gap local planner
is applicable on the real nonholonomic robots to maintain
navigation safety and passibility.

V. CONCLUSION

The proposed Safer Gap local planner designs a safe nav-
igation policy for nonholonomic mobile robots. It generates
smooth joined Bézier paths in the collision free space defined
by gaps to guarantee safety. We performs NMPC to track
the reference path considering nonholonomic dynamics. A
synthesized Keyhole ZBF for the free space is integrated as
a safety constraint to prevent collision with obstacles. At

the end, keyhole control barrier function provides additional
safety at the lowest level of navigation hierarchy. From the
simulation benchmark and real experiments, Safer Gap is
demonstrated to achieve safe navigation for nonholonomic
robots without losing gap passibility. In the future work, dif-
ferent robot dynamics and environment complexities should
be tested to evaluate the robustness of Safer Gap.
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