
Real-Time Egocentric Navigation Using 3D
Sensing

Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

Abstract This chapter proposes a hierarchical navigation system combining the
benefits of perception space local planning and allocentric global planning. Percep-
tion space permits computationally efficient 3D collision checking, enabling safe
navigation in environments that do not meet the conditions assumed by traditional
navigation systems based on planar laser scans. Contributions include approaches
for scoring and collision checking trajectories in perception space. Benchmarking
results show the advantages of perception space collision checking over popular
alternatives in the context of real time local planning. Simulated experiments with
multiple robotic platforms in several environments demonstrate the importance of 3D
collision checking and the utility of a mixed representation hierarchical navigation
system.

Justin S. Smith
Georgia Tech, School of Electrical and Computer Engineering, North Ave NW, Atlanta, GA 30332,
e-mail: jssmith@gatech.edu

Shiyu Feng
Georgia Tech, School of Mechanical Engineering, North Ave NW, Atlanta, GA 30332 e-mail:
shiyufeng@gatech.edu

Fanzhe Lyu
Georgia Tech, School of Electrical and Computer Engineering, North Ave NW, Atlanta, GA 30332
e-mail: fanzhe@gatech.edu

Patricio Vela
Georgia Tech, School of Electrical and Computer Engineering, North Ave NW, Atlanta, GA 30332
e-mail: pvela@gatech.edu

This work supported in part by NSF Awards #1400256 and #1849333.

1

2 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

1 Introduction

Navigation is an essential computational component of autonomous mobile robots,
ensuring that the robot gets from one point in space to another. When deployed,
it is commonly implemented as a two time-scale solution involving planning with
real-time constraints on decision-making. The longer (or slower) time-scale process
aims to find a global path from the current robot location to the desired termi-
nal location and relies on a valid or sufficiently complete map of the world to
navigate. The shorter (or faster) time-scale process maneuvers the robot within
the world avoiding obstacles while striving to follow the global path. It is com-
mon for the global path to be approximately realizable due to uncertainty in the
global map. Uncertainty arises from missing map data or modified world struc-
ture due to moved, introduced, or removed objects. In dynamic environments, the
maneuvering should avoid other moving objects, which would typically be peo-
ple, animals, cars, or robots, depending on the application. The faster process de-
tects and adjusts the trajectory in response to deviations between locally sensed
world geometry and presumed world map geometry, especially when the global
trajectory violates the collision-free trajectory constraints based on the local sen-
sor data. Given the domain and source of the map data used, the slower and faster
planning processes are often called the global and local planners. A navigation

Fig. 1 Depiction of the complementary
roles of the global planner (green trajec-
tory) and local planners (blue and yellow
trajectories) in the context of navigation.

system modulates and coordinates the infor-
mation flow between the two planning pro-
cesses. Figure 1 depicts a sample scenario
with the robot starting on the left (black dot)
and tasked to move to the right (red dot) The
global path planner generates a candidate tra-
jectory at the onset (solid green) based on
available map information. In this case, only
the walls are known. The local planner strives
to match the global path, but must detour as
unknown obstacles are identified. Depicted
are two paths, one of which is realizable by a
thinner robot (solid blue), and the otherwhich
is realizable by a wider robot (solid yellow).
The wider robot would not be aware of the
infeasibility of the plan until arriving at the
impasse. A global re-plan would then provide a new, potentially feasible path based
on the additional map information gained during navigation. This new path would
be followed and modified as potential collision points are identified and avoided.

Important considerations associated with a navigation system include the rate
at which the global path is recomputed based on locally sensed information or
state triggers, what information is shared between the two processes, what world
representation is chosen, and what planning strategies are employed for the global
and local planners. This chapter summarizes the research and findings related to the
global planner and techniques for the local planner. For the latter, the discussion

Real-Time Egocentric Navigation Using 3D Sensing 3

focuses on developments related to the contemporary availability of dense visual
measurements of the 3D world structure as compared to the predominantly 2D laser
scan measurements used by classical planning algorithms and employed in many
local planning methods. The use of image-based measurements that provide depth
or range information increases the cardinality of the data to process by two orders
of magnitude or more. Classical laser scanning methods do not translate to or do
not scale well with the increased sensory data when going from planar to spatial
measurements (2D to 3D). This chapter describes alternative data representation,
trajectory scoring, and collision detection schemes that improve on the weaknesses
of classical methods while striving to be as compatible as possible with them. In
doing so, we anticipate that many classical and modern navigation methods can be
modified to work with modern dense imaging systems that provide depth or range
information.

The chapter is organized to first cover global planning strategies (§2), followed
by local planning methods (§3). The review of local planning methods discusses
implementation modifications due to advances in robot sensing from laser scan-
ners to dense 3D range-based sensors. Purely monocular, color camera sensing is
excluded due to the loss of depth information and the inability of these methods
to guarantee collision-avoidance when traveling within the field of view. Findings
from neuroscience covered in §4 motivate a mixed method solution, whereby the
global world representation and the local world representations differ. In particular,
the local representation minimally processes the sensory data and operates in Marr’s
mid-level visual representation. The result is a perception space local planner whose
design and integration with a global planner is described in §5 and contrasted to
existing strategies described in the literature. Prior to implementing and evaluat-
ing the PiPS approach, §6 describes a navigation benchmark for evaluating mobile
robot navigation algorithms. The experimental outcomes in §7 cover range-based
navigation strategies using two mobile robot platforms and multiple environments.
Experimental Monte-Carlo runs quantify the success of these methods relative to
traditional approaches. Finally, Section §8 summarizes the chapter contents and
provides concluding remarks.

2 Global Planning

Planning a robot trajectory, or synthesizing a control signalwhose application leads to
a robot trajectory, requires a representation of the world within the computer proper
[1, 2, 3]. Initially, representation strategies may be split into those that attempt
to preserve the underlying continuity or those that discretize the world for easier
processing. The latter approach is most often taken on account of simplifications
afforded by discretization.

4 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

(a) Grid world and path. (b) Voronoi graph world. (c) RRT graph with path.

Fig. 2 Discretization schemes and plans generated from then. For the grid-based method (left),
the plan follows connected discretized volume elements marked as empty. For the Voronoi method
(middle), the plan connects to the nearest graph point, traverses the graph, then connects to the
terminal point at its nearest graph point. The RRT (right) is like the Voronoi, but with the graph
generated through a sampling process.

2.1 Planning in Discrete Spaces

Prevalent discretizations involve conversion of the world into a grid structure or a
graph structure. Occupancy maps or occupancy grids are one common grid-based
data structure. Ultimately, however, planning on grid-like structures gets reduced to
planning on the equivalent graph structure with spatially determined connectivity
(e.g., neighbor connectivity). One popular discrete planner is A* [4], a heuristic-
informed extension of Dijkastra’s algorithm [5] balancing depth versus breadth based
search. If any part of the environment changes, the search must start over. The desire
to admit re-planning from a previous invocation led to Dynamic A* (also known as
D*) [6], which reduces the cost of replanning by performing local modifications of
past searches. D* Lite [7] is a simpler and more efficient version, while Anytime
D* (AD*) [8] is both anytime and incremental. Figure 2a depicts a grid-based
planning scheme with the associated Manhattan world path, which uses only the 4
neighbors (up, down, left, right). Grid-based methods are constrained by the curse
of dimensionality, whereby the search space grows exponentially with its dimension.
Resolving fine details in a world requires exponentially more memory and results
in longer planning times than using a coarser representation. The granularity of the
grid implicity discretizes obstacle and robot dimensions, which may render feasible
trajectories infeasible. Adaptive gridding structures and graphical processing unit
(GPU) computation overcome the limitations of fixed grid world models and speed
up planning time [9].

An alternative strategy to gridded world methods is to employ a sparse graph
structure [10]. One such representation is the Voronoi graph of a world. The Gen-
eralized Voronoi Diagram (GVD) is a representation of free space consisting of the
locus of points equidistant to obstacle boundaries, see Fig.2b. Graph search algo-
rithms and heuristics can be used to find the shortest path through the GVD [11].
Given that the calculation of a GVDmay be computationally prohibitive, an alterna-
tive graph creation method is Probabilistic Road Maps (PRM). The PRM algorithm

Real-Time Egocentric Navigation Using 3D Sensing 5

constructs a graph of feasible paths during a preprocessing phase and uses this graph
to find paths between desired points. It is probabilistically complete with established
performance bounds [12, 2]. Lazy PRM decreases the runtime of the algorithm by
only performing collision checks when searching for the shortest solution to a query
[13], making the planner more suitable for single queries. PRMs have been extended
for efficient replanning in dynamic environments by combining concepts from Lazy
PRM and AD* [14, 15].

The PRM is an example of a sample-based planner where the sampling is done
in advance. Instead of spending time generating the PRM, rapidly exploring random
trees (RRT) are likewise probabilistically complete but performminimal exploration,
encouraging fast and efficient planning [16]. These properties are achieved by com-
bining graph creation with plan search by building out the graph in a goal-directed
manner through a combination of randomized sampling and heuristic or greedy (go-
to-goal) sampling. An RRT planning instance is depicted in Fig.2c. Extensions to
the basic RRT method include bi-directional search [17] and continued search to
improve optimality [18]. Usually path smoothing is needed after identifying a solu-
tion due to the potential jaggedness of paths obtained from random steps. RRTs have
been used for the path planning of autonomous vehicles [19]. They have also been
extended for more efficient replanning in dynamic environments [20, 21, 22]. RRT-X
is a recent extension that maintains and updates a single search graph throughout
navigation and makes no distinction between local and global planning [23].

Motion planners can also be based on motion primitives. Sample-based plan-
ners that incorporate dynamic constraints include kino-dynamic planners, whereby
connected nodes are reachable through a feasible control or constraint satisfying tra-
jectory [24, 25, 26, 27]. In [28], such a planner permits aircraft to navigate through
a dense forest. It uses one primitive to link any two points in space through con-
stant control inputs and another to perform an aggressive turn. Since the primitives
account for the dynamics of the aircraft, the planner only has to find a sequence of
points for the aircraft to travel through and then use the appropriate primitives.

2.2 Planning in Continuous Spaces

Rather than converting the spatial representation of the world into a graph then
inducing the same representation on the sought trajectories, onemay seek to preserve
the continuous structure of trajectories. If the control dynamics are ignored, then
these strategies seek out continuous curves connecting the start and goal points. The
simplest of such approaches is the potential field method, which employs potential
functions to define a gradient-based vector field [29]. Following the potential field
gradient as a differential equation yields the trajectory to follow. Since potential field
methods have problems with local minima, extensions exist to arrive at formulations
whose solutions are true global minima or have no local minima [30, 31, 32]. The
same conversion applies to fast marching methods on a grid world [33, 34], which

6 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

provide a more continuous trajectory versus the equivalent Dijkstra implementation
over the underlying grid.

More complex approaches seek an actual trajectory by optimizing over the trajec-
tory function space. The infinite-dimensional nature of trajectories requires finite-
dimensional, parametric representations of curves to be used [35, 36]. If the actual
control signals are also sought, then the problem becomes an optimal control prob-
lem, for which there are many solution strategies [37, 38, 39, 40, 41, 42, 38]. The
main drawback to these methods is the computational cost associated with finding
a feasible trajectory, especially when there are many obstacles. For computational
efficiency, these methods are often iterative or gradient based in nature. They benefit
from pre-conditioning the initial condition via a discrete planning method. If the
overall problem has not varied significantly from the previous invocation, then the
previous solution serves as a good initialization for iterative solvers [40].

A major issue for all global planners is the speed with which sensed data can be
assimilated into the global map. For the slow global planners, global map updates are
not the main bottleneck. However, for global planners that assert real-time operation,
usually the cost to transfer sensor data to the internal representation and to update
any important map data structures or cost functions far exceeds the plan update rate
(by 1 to 3 orders of magnitude). Local planners exist to speed up this process by
limiting what data is considered in the fast path updates. Following rapidly updated
local plans gives the global planner time to generate an update based on the newly
integrated information.

3 Local Planning

The need to augment global planning with local planning follows from the inability
of global planners to re-plan at a rate compatible with the incoming sensory data
and the underlying trajectory tracking controller. The purpose of the local planner
is to generate real-time updates to the global plan, usually at the control feedback
rate or close to it, in order to compensate for map errors, new objects, or moving
objects. A common approach is to employ a hierarchical planner, in which the global
and local levels use the same world representation though not necessarily the same
data structure. Doing so means that a single method may serve two roles, however it
requires that the conversion of sensory data to the world model occur faster than the
sensory rate.

Early research on navigation primarily emphasized ultrasonic and laser scanmeth-
ods since these sensors provided direct measurements of the external environment,
as opposed to vision-based methods which required costly, at the time, processing
to convert the raw visual signals into spatial data regarding the local environment.
The dense 1D measurement signal provided from a laser scanner is sufficient for
navigating through structured worlds where the scan plane provides correct infor-
mation regarding collisions. With computing and sensory hardware improvements,
navigation with dense 2D range or disparity image signals has started to become

Real-Time Egocentric Navigation Using 3D Sensing 7

the norm. However, there are limitations to literally translating laser scan methods
to admit dense imagery. Many of the existing solutions cannot scale with the data
cardinality. This section covers the above history and topics.

Reactive Methods

Reactive methods use the locally sensed obstacle space and the current goal point
to identify an immediately applied control policy. For ground vehicles, the control
consists of a speed and steering command, though some methods assume a constant
velocity model and simply steer. The potential field method [29] described earlier,
due to its gradient following approach, is implementable as a reactive method. The
Virtual Force Field method is one such implementation [43]. Sensor readings are
used to update a global certainty grid of obstacles which is then used to calculate the
repulsive forces of obstacles.

Rather than use point representations in a local Cartesian grid, the Vector Field
Histogram (VFH) [44] method uses a local polar (histogram) representation for
local points in the global map relative to the current robot pose. Processing of the
polar histogram generates new steering commands, with an additional processing
step to establish speed changes. The steering commands aim towards the best free-
space option consistent with the current goal point. Improvements to the reactive
policy include VFH* [45], which performs look-ahead verification using a short
horizon forward time search with A*. It hypothesizes future polar histograms from
the global map. Integration into a hierarchical planner for navigation was performed
with VFH+ as the local policy [46]. The VFH approach was modified to apply to
dense laser scanning sensors by processing directly on the sensor data in the Vector
Polar Histogram approach (VPH) [47, 48]; it classifies travel directions into blocked
and unblocked prior to determine the steering direction and the speed update.

Due to specific issues that arise from single policy reactive strategies, the Near-
ness Diagram Navigation (ND) method [49, 50, 51] first classifies the polar data into
distinct environmental conditions. Each class is assigned a reactive, or sensor-driven
feedback, policy for more robust and consistent navigation. The intent is to avoid
the local minima and unstable motion sometimes exhibited by single policy reactive
approaches. The ND navigation method factors the width of the robot into its reason-
ing. A hierarchical navigation implementation with global planning exists [52]. ND
navigation is one of the early instances of gap-based navigation. Other gap-based
approaches include [53, 54, 55] as well as [56] which considers the robot shape and
kinematic constraints.

Velocity or Control Space Methods

The approaches considered up to now have not taken into account the vehicle’s dy-
namics. Approaches operating in velocity space, in contrast, are able to accomodate
nonholonomic kinematic constraints. For example, rather than look at instantaneous

8 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

angles, or radial directions relative to the robot, the Steer Angle Field [57] algorithm
evaluates forward integrated circular paths, discretized by steering angle. These
sampled paths get checked for collisions, with the forward speed modulated by the
existence–or lack thereof–of feasible paths. The method was integrated with a hi-
erarchical navigation system [58]. Likewise, [59] performs local reactive obstacle
avoidance by considering various circular trajectories and selecting one that maxi-
mizes the translational velocity, minimizes the angle to the target point, satisfies the
robot’s dynamics, and avoids collision for at least two seconds. A later implementa-
tion called the Dynamic Window Approach (DWA) [60] samples from a discrete set
of relative control or velocity changes from the current control or velocity. It operates
on a 2D occupancy grid model of the world and is capable of incorporating planar
robot geometry into the collision checking. Like VFH, DWA has been extended
to incorporate look ahead searching [61], best suited for dynamic obstacles. DWA
methods exist which integrate with a global planner or into a hierarchical navigation
strategy [62, 63].

A similar velocity space approach is Curvature Velocity Method (CVM) [64]. In
this approach, obstacle avoidance is solved as a constrained optimization in velocity
space. This allows speed and heading to be solved simultaneously and constraints
to be added easily. These include robot velocity and acceleration as well as any
application specific constraints (safety vs speed, etc.). The Lane Curvature Method
(LCM) [65] addresses some shortcomings of CVM. It selects a lane based on
collision-free distance and width and computes a local heading to guide the robot
into the lane. CVM is then used to generate the necessary translational and rotational
velocities. Since openings are chosen based on the width of the lane rather than
angular width of the opening (as in VFH), the paths generated by LCMmay be safer.

Optimal Trajectory Synthesis

Bridging the gap between reactive planners and velocity space planners are contin-
uous trajectory synthesis implementations on the local map. On sufficiently small
domains, they can run in real-time when capable of using the grid-based costmaps
for cost and constraint evaluation. The Elastic Bands (EB) [66] planner generates a
free-path (the elastic) in C-Space. This elastic deforms based on external repelling
forces generated by obstacles as well as internal contracting forces for path length
minimization. The EB approach has extensions for handling kinematic constraints
[67]. The Timed-Elastic-Bands (TEB) [68] adds dynamic constraints. TEB has also
been extended to maintain and optimize multiple candidate trajectories of distinct
topologies [69].

Real-Time Egocentric Navigation Using 3D Sensing 9

3.1 Moving to 3D environment representation

A 2D environmental representation was sufficient when the primary sources of sen-
sor data were planar, such as when using sonar, fixed (horizontal) laser scanning
sensors, or other laser ranging methods [70, 71]. Dense sources of 3D points pro-
vide the opportunity to detect and avoid collisions with obstacles that planar sensors
might miss, such as obstacles that protrude from the side or hang down from above.
As a result, there is a motivation to utilize dense 3D sensor data when it is available.
Common 3D dense data sources include Time-of-Flight (ToF) cameras, depth cam-
eras, LIDAR, and triangulating scanners [72]. Stereo vision sensors also apply by
simply generating a dense depth or disparity map.

One approach for utilizing 3D data with classical planning approaches is to
project the data down to a 2D representation and run the planners as normal [73, 63],
or performing a column-wise min operation over depth images for planar world
information [74]. Generally, points are filtered in order to only consider those within
the height of the robot. Though easy to implement and computationally cost efficient,
there are some downsides to simplifying the environmental representation in thisway.
Unless the robot’s cross sectional geometry is constant with height, the simplified
representation will be overly conservative; valid configurations may be detected as
in collision with the environment.

Another approach is to maintain a 3D world model and use this for planning.
However, there are several challenges with doing this. First, not all local planning
approaches are readily adaptable in this way. For example, gap aiming (directional)
approaches [53] are explicitly designed to process a 1D list of measurements (such
as from a laser scan). Indeed, only recently have gap aiming approaches explicitly
considered non-point, non-holonomic robots [56]. Sampling-based approaches, on
the other hand, have an explicit trajectory scoring step which can be modified to
perform collision checking against a 3D environmental representation. Such a tactic
is taken with discrete steering directions checked against a filtered point cloud model
of the world [75]. Likewise [76] compares a fixed set of sample trajectories against
a local point cloud. Using stereo the aerial robot detects points at a given range, and
propogates them in time for a richer world model. The range-filtered measurements
keep the point cloud model sparse enough for real-time operation on lightweight
computing platforms.

Another challenge is selecting the environmental representation to use. One of
the simplest is the voxel grid (a 3D cartesian occupancy grid), however memory
requirements for voxel grids are high due to the curse of dimensionality. Variable
resolution structures can significantly reduce the amount of memory required using
datastructures such as octrees [77]. For aerial vehicles, the volumetric map can be
height filtered for more efficient processing [78]. Rather than employ efficient occu-
pancy data structures, efforts have considered alternative point cloud data structures
with efficient query times. Points can be stored in sorted datastructures such as kd-
trees to allow faster nearest-neighbor queries [79]. The method is very efficient when
the sensor data is of low cardinality, the local volume is restricted, and the robot

10 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

model is a point. There is an added computational cost to build and maintain these
data structures.

Even if the planning algorithm itself could operate in real time, the process of
updating the world representation introduces latency between sensing and planning.
An alternative approach is to avoid the reconstruction process and perform planning
in an earlier visual representation. For navigation strategies using stereo camera
systems, this involves planning directly in disparity space [80, 81, 82] or planning
using combinations of optical flow and stereo disparity [83, 84]. After gathering
dense data from sensors, these approches explore C-Space trajectory sampling and
collision checking in the perception space. Local path options are mapped into the
image space for evaluation [85, 86],where the objective is to follow the path generated
by a global planner such as A* while avoiding unmodeled obstacles. Perception
space approaches improve time performance by reducing the delays associated with
populating and maintaining in-memory data structures.

4 Neuroscience Research Related to Navigation

The compartmentalized structure of robotic navigation algorithms is likewise re-
flected in the human brain. Though different from engineered systems, cognitive
and behavioral neuroscientists and researchers have identified distinct process-
ing regions and characteristics regarding navigation via controlled experiments
[87, 88, 89, 90, 91, 92, 93]. The findings suggest that perception for navigation
involves both egocentric (or viewer-centric) models for decision-making, as well as
object-centric (or world-centric) models, sometimes also referred to as allocentric.
The former corresponds to visual understanding relative to the human’s reference
frame, whereas the latter is relative to an external reference frame usually belonging
to an object receiving attention. Similar structural differences in computation have
been proposed by Marr when describing a representational framework for vision
[94] and its computational aspects. In particular, from low-level to high-level, he
described four primary components as depicted in Fig.3. The first is the raw in-
formation associated to the sensed scene, the input image. The second, called the
primal sketch, consists of basic signal processing transformations of this image that
extract geomoetric and volumetric primitives from the image proper (lines, areas,
blobs, etc.). The third, called the 2.5D sketch, reflects higher level interpretation
and analysis of the image and its low-level features. The representation of informa-
tion is still at the image level, however depth data or depth-dependent information
exists as a layered representation. The layered images contain information about
the distal ordering of the scene relative to the viewer. Represented internally using
image-based data structures, these three initial levels are viewer-centric. The last
layer reconstructs or generates a richer 3D model of the objects sensed within the
scene. At this level the reference frame or viewpoint shifts away from the viewer and
to a global reference frame or an object-centered reference frame. In this manner, the

Real-Time Egocentric Navigation Using 3D Sensing 11

Input Image Primal Sketch 2.5D Sketch 3D Model

intensities,
colors

edges, blobs, bars,
zero crossings,
line segments,
boundaries, etc.

surface normals,
depth layering,
discontinuties

3D model,
surface info,
volume info,
location, etc.

Viewer Centered Object Centered

Fig. 3 Marr’s representational framework for visual processing. Of the four stages depicted, three
are in viewer centered representations, with the fourth in an object centered representation.

reconstructed model is independent of the user’s view and may persist as it changes
in response to relative motion between the viewer and the object. Naturally, missing
from this description is the agent’s memory of past scenes or locations. However, it
is sensible to imagine that both egocentric and allocentric memory and predictive
models exist [87, 88].

Though distinct regions and reference frame processing paradigms have been
discovered, there is still coupling between them. The research suggests that early
computation may primarily rely on egocentric models with some influence from
allocentric models [90, 91]. Likewise, information related to egocentric navigation
appears to be important for detecting or estimating important allocentric states or
collision informing properties [87, 95]. Thus, within the neural processing hierar-
chy, egocentric processing happens earlier than allocentric processing but can be
influenced by earlier allocentric outcomes expected to persist into the near future.
With regards to objects, Marr’s framework predicts that object information would
primarily be encoded allocentrically. However, since evidence for an object arises
from lower level evidence, we should expect that some information regarding ob-
jects exists in an egocentric representation. There is indeed evidence that egocentric
representations are used for object locations [96] as well as for navigation goal states
[97]. There is also support for brain regions that translate between the two repre-
sentations, such as from egocentric to allocentric representations (ex: what is my
current position on this map given my current view) and vice versa (ex: in order to
head west, I need to turn left) [98]. Rat studies have shown that the same stimuli will
affect different regions based on their egocentric or allocentric properties [99].

The research suggests that both representational forms for modeling the world
should exist within a navigation pipeline. In particular, methods employing only
world-centric models at all levels of the navigation hierarchy may be misguided.
Yet many navigation frameworks are characterized by this property. Instead, viewer-
centric models should be incorporated and prioritized within components requiring
fast decision-making and low latency from the sensory input to the controlled re-

12 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

sponse. Additionaly, world-centric models should be prioritized for slower decision-
making and reasoning that operates beyond the local frame or rquires an external
frame to simplify processing. Furthermore, the two processes should be coupled at
a rate consistent with navigational decision-making.

5 PiPS: An Ego-Centric Navigation Framework

This section introduces and expands upon a local planning method employing per-
ception space (PiPS) [100]. In relation to Marr’s visual framework, PiPS operates
in the mid-level 2.5D representation whereas it is assumed that the global plan-
ning method will operate in the world representation. This section first covers the
structure of the navigation system, including general details on how the global and
local planners integrate. It then covers the collision checking process of PiPS and
compares the time costs of various data structures used for collision checking against
local 3D environment models. Extensions to PiPS for integration into a hierarchical
navigation system are covered in the remaining sections. In particular, the original
memoryless PiPS is augmented both with memory and a local cost-map component.
These augmented data structures are called the egocylinder and egocircle. They
provide means to perform collision checking and trajectory scoring, respectively.
The final integrated, PiPS-based navigation system results in a mixed representation
navigation scheme with linear scaling properties in the data cardinality and real-time
obstacle avoidance properties. Navigation simulations and visualizations are created
using Gazebo and RViz.

Navigation using Move Base.

The ROS Move Base package provides an API for hierarchical goal directed navi-
gation of planar robots. Its design enables the incorporation of different global and
local planners. These are connected by a trajectory synthesis module and several
scoring systems that evaluate or influence the final local trajectory chosen. Move
Base, like many other navigation frameworks, operates under the assumption that
the global and local planning representations will be the same, e.g., grid-based. As
a consequence, the scoring mechanisms fundamentally rely on costmaps.

Costmaps are 2D grids populated with travel cost or other scalar value for as-
signing a cost to each grid cell. These costs inform the Move Base planners. There
are several different sources for the costs, with one being the occupancy grid. An
occupancy grid keeps track of navigable space and non-navigable space (or oc-
cupied space) associated to obstacles. Obstacles are added to the occupancy grid
from sensor data such as laser scans or point clouds. Grid points between the sen-
sor location and detected obstacles are marked as unocuppied via ray tracing. To
factor in the robot’s radius, inflating each occupied cell through dilation techniques
generates an inflated occupancy grid (usually by the smaller radius if the robot is

Real-Time Egocentric Navigation Using 3D Sensing 13

not circular). Generating the obstacle distance map involves assigning each unoc-
cupied cell the distance to the nearest occupied grid cell. This obstacle distance
map informs the creation of path scoring costmaps. There is a global costmap used
for global planning. It covers the entire region of known space within which plan-
ning occurs. If a prior model for the environment is available, it can be used to
initialize the global costmap. Otherwise, the entire costmap is initialized as un-
known and considered traversable for the purposes of global planning. In addi-
tion, there is a local occupancy grid that tracks occupancy information in a robot
centered local Cartesian grid whose orientation is fixed relative to the initial ori-
entation of the robot. Figure 4 depicts such a local map where the initial robot

Fig. 4 Mobile robot navigation with visual-
ization of the local map as a square centered
on the robot.

orientation differs from the current robot
orientation and the world orientation, hence
the rotated projection of the local map onto
theworld. The local nature of the gridmeans
that costmaps generated from the local oc-
cupancy grid are only defined for a fixed
Cartesian domain centered on the origin.
The domain dimensions are set to be com-
parable in size to the sensing region of the
robot (though they could be set smaller if
desired). The local costmap is key to local
planning and must update faster than the
sensor rate to admit the real-time synthe-
sis of new local paths. Figure 5 depicts key
costmaps associated to local planning. Low
cost regions are red, while high cost regions
tend to blue/purple. The obstacle cost penal-
izes robot trajectories that pass too close to obstacles. The local goal cost penalizes
sample robot pose locations based on the minimum travel distance to the local goal
point, which is the point of the global trajectory (marked as a black curve in the
costmaps) at the boundary of the local map. Basically, it penalizes trajectories for
ending away from the local goal. The path cost penalizes robot pose points based
on their distance to the nearest global path point. Higher costs are associated to
trajectories straying from the global path. The time to populate these costs from the
occupancy grid varies from O(n) to O(n log n) where n is the grid area [33, 101].

The global planner in Move Base uses a variant of Dijkstra’s algorithm to find
a path from the robot’s current pose to the specified goal, while the local planner
generates velocity commands to direct the robot along this path. The default local
planner provided with Move Base is the DWA local planner (DLP), which invokes
DWA [60] to sample velocity commands. Sampled velocities are forward simulated
to create trajectories. Each trajectory is scored based on a weighted sum of costs for
the described cost functions: the obstacle cost, the goal cost, and the path cost. The
local and global planners run at specified frequencies. If the local planner fails to
find a valid velocity command, global replanning is triggered. If the local or global
planner fails for longer than its specified time limit, a recovery behavior rotates the

14 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

robot in an effort to clear obstacles from the local costmap. If all recovery behaviors
have run and the planner is still unsucessful, navigation aborts.

PiPS Modifications to Move Base.

The principal components of Move Base are depicted in the data flow diagram of
Fig.6. Not depicted is the robot pose information generated by the odometry or local-
ization process, which is required to propogate forward in time past measurements.
This estimated pose update will be denoted gmove. The traditional DLP implemen-
tation involves the blue blocks, the black blocks, and the dashed block. We will
modify the local planner to employ an egocentric representation for the world based
on distal information of obstacles and global path points and maintained in a 2D or
1D array, thereby operating in perception space rather than in world space. These
are the red blocks labeled Ego-Circle and Ego-Cylinder, which correspond to the
propagation of perceptual memory regarding the local egocentric representation of
occupied space. Additional important modules include collision checking and path
scoring, which are both part of the local planner. Employing a mixed representation
requires extensive modification of the existing scoring methods, especially those
linking the local path to the global path.

5.1 Collision Checking in Perception Space

Rather than map the sensor data regarding the local world into a world centric rep-
resention, PiPS keeps the sensor data in a viewer centric representation. Collision
checking requires mapping the robot model into the same viewer centric representa-
tion and comparing the robot model’s distal properties to those of the surrounding
environment. Thus, rather than evaluating collisions using 2D or 3D world maps, we

(a) Obstacle cost. (b) Local goal cost. (c) Path cost.

Fig. 5 Visualization of the trajectory scoring as cost maps computed on an occupancy grid. Low
cost is red and high cost is blue/purple. The black curve is the global path to follow.

Real-Time Egocentric Navigation Using 3D Sensing 15

Global Planner

Local Planner

Cost Functions

PiPS Collision
Checker

Trajectory
Sampler

Base Controller

Depth

Ego-Circle

Ego-Cylinder

Local Costmap

Global Costmap

Fig. 6 Block diagram depicting processing and data flow for the PiPS-based navigation strategy.
Design considerations for the critical components are covered in this section. The blue components
are unchanged, the red components are PiPS enhancements. The dashed component is only used
by the traditional Move Base pipeline. The “Cost Functions” block is also modified for PiPS.

evaluate collisions using 2D images. Collisions occur when the robot model maps to
depth layers that lie further away from sensed world depth layers in a given region of
space. In the opposite case, if the robot geometry of a test pose maps to image regions
whose obstacle depth layers are further away than the robot depth layers, then the test
pose is considered safe. In this manner, PiPS switches the main collision-checking
computations from relying on the transformation of sensory data to world data for
collision checking of the robot in the world, to relying on the transformation of the
robot world model to the sensor representation for collision checking in image-space.

Mapping of the robot to the sensor representation requires modifying the graphics
z-buffer rendering pipeline. To render an object model, the traditional approach to
graphics considers all object points that project to the image then chooses at each
pixel only the closest point projecting to it as themeasurement source. The remaining
points that project to the camera at that pixel are ignored. This is a closest pointmodel.
Given closed mesh models of all objects in the world, the set of projection points
that may realistically project to the camera are those whose outward normal to the
mesh points toward the camera. For collision checking we wish to synthesize not the
closest point to the camera, but the furthest point from the camera (with a normal
vector pointing in agreement with the camera optical axis vector).

Given a surface mesh model of the robot, synthesis of the collision depth image
of a hallucinated robot in an empty world will select the furthest points. Let the set{

(qi, n̂i)
}
of robot points with associated outward surface normals be those that

project to the camera at pixel r . Then the chosen point to be used for the synthesized
depth image is the one with the index

i∗ = arg max
i

D(qi) subject to
[
n̂i

0

]
· qi > 0 ∧ z > 0, (1)

16 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

where D : R3 → R+ maps points to depths. The depth of point qi∗ is placed at pixel
r . All points in the image of the hallucinated robot that do not have a projected point
are simply set to 0.

As the hallucinated robot pose g ∈ SE(3) changes, the collection of surface points
and normals will change under g, leading to different depth images. This robot pose
is in collision with actual objects in the real world if the sensor image Dm has a value
less than that of the hallucinated robot image DH = D ◦ g(MR), whereMR is the
mesh model of the robot (simplified to a set of points and outward normals). Simply
put, a hallucinated robot pose is collision-free if

Dm(r) > DH (r) ∀r ∈ I, (2)

where I is the image coordinate domain. A collision-free, hallucinated robot pose
is called a safe pose.

Figure 7 depicts the process just described. Viewing from left to right, the top
row consists of the world view for a pose testing scenario. The real robot (black)
contemplates itself at a future trajectory pose (red) that is not safe. Collision checking
is not performed with the more complex true model, but rather with a cylindrical
simplification (red cylinder in second column). For collision purposes in depth space,
only the far sides of the robot matter (cyan surface in third column). A portion of the
robot collides with walls in the real world (yellow surface in fourth column). The
blue volume depicts the projection cone associated to the tested robot pose. Image
depth values indicating world point within this cone indicate a robot collision at
the hallucinated robot pose. PiPS does not perform the collision checking from the
world (or third person perspective). Rather it performs the collision checking in the
viewer-centric perception space (or from the first person perspective) as depicted in
the second row. From left to right, the first person views are visualized. The right-

Fig. 7 Each column illustrates a conceptual step of PiPS. The top image depicts the scene from a
third person perspective, while the bottom image depicts it from the robot’s first person perspective.
From left to right: hallucinate the robot at a pose (red); Replace the robot with a simplified geometric
representation (red); Find the far surface of the robot (light blue); Detect collisions (yellow)

Real-Time Egocentric Navigation Using 3D Sensing 17

most column actually involves the overlay of the two depth images, as can be seen
by the gray depth values corresponding to the robots far cylindrical surface patch.
The yellow region contains robot depth values that are greater than the measurement
depth image values.

Efficiency of Perception-Space Collision Checking

The PiPS local planner in [100] sampled from a pre-determined set of trajectories
that remained in the field of view relative to the robot’s current perspective, then
selected the longest non-colliding trajectory. It was capable of real-time operation
on embedded processors with the computational power of circa 2014 cell phones,
thereby demonstrating favorable processing properties. It can run in real-time on
today’s embedded system-on-a-chip processors, such as those using the latest Arm
Cortex chips. Here, we explore more deeply the computational cost of PiPS. The
asserted value of a perception space approach to collision checking is that con-
version of the sensory data to alternative world representations incurs a time cost
that determines the minimal response latency of the local navigation policy. This
section performs a collision check time cost comparison for several world model
data structures and collision query strategies. The data structures chosen for com-
parison are depth image (PiPS), point cloud, octree, and k-d tree. With reference
to Fig.6, the latter data structures would require swapping out the “PiPS Collision
Checker” block with the appropriate collision checking implementation, and would
involve programming alternatives to the Ego-Circle and Ego-Cylinder blocks. The
first evaluation metric of interest is the time cost of initializing the data structure
from a new sensor input. This value is significant because it represents the minimum
latency between receiving environmental information and being able to act on it.
The second evaluation metric is the time cost of performing a collision check with a
given robot pose. Together, these impact the time cost of collision-checking a single
trajectory or a set of trajectories. The timing experiments were performed on an Intel
Xeon E5-2640@ 2.50GHz processor with single-thread Passmark score of 1468 and
multi-threaded score of 9512. All reported timings are for single-threaded collision
checks.

The investigated data structures require different amounts of processing to ini-
tialize from sensor data. For the PiPS depth image process, the only processing
performed is transposition of the incoming depth image for more efficient pixel-wise
comparisons during collision checking. The point cloud approach requires convert-
ing the incoming point cloud sensor message to a Point Cloud Library (PCL)[102]
data structure. The k-d tree and octree approaches also require the input depth image
to be converted to a point cloud for populating the data structures. The k-d tree
implementation is from the Point Cloud Library (PCL) [102]. The implementation
used for the octree is octomap [77]. An octree with 5cm resolution is created from a
point cloud using code derived from the Octomap Server ROS package [103].

The time required to perform the preparatory conversions is listed in Table
1. Conversions are performed using nodelets from the depthimage_to_laserscan,

18 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

Table 1 Average times (in ms) for data preparation/conversion to necessary input format.
Resolution: 640x480 320x240 160x120
Depth image to PointCloud 2.2 .61 .21
Depth image to LaserScan .66 .35 .22
Decimate .084 .31 .20

Table 2 Average times for initializing datastructures from an input (in ms).
Resolution 640x480 320x240 160x120
Depth image .64 .14 .048
Point cloud 6.67 2.74 .59
K-d tree 34.0 7.8 3.7
Octree 245 88 42.7

Table 3 Average times for collision checking a pose (µs).
Resolution 640x480 320x240 160x120
Depth image 55.0 31.6 19.6
Point cloud 882 450 118
K-d tree 8.9 7.4 6.9
Octree 11.4 11.6 11.6

depth_image_proc, and image_proc packages. Depth images from a ROS/Gazebo
simulated environment pass through the Decimation nodelet and on to the Point-
Cloud and LaserScan nodelets. Custom timing nodelets record the time required for
conversion and are enabled for only one conversion nodelet at a time. Measurements
are collected until the average value is stable to at least 2 significant digits.

Across the board, the depth image decimation time remains lower than the other
conversion strategies. The non-zero cost of the 640x480 decimation approach rep-
resents the overhead of passing an image on without any processing.

We also measured the average time required to populate each data structure from
new sensor inputs of several different resolutions and report the results in Table
2. The per-frame and per-pose computation cost is calculated using a collection
of 791 depth images captured while the robot wandered through a ROS/Gazebo
simulated environement. A set of 200 poses, representing a set of trajectories, was
also generated. In order to evaluate how computational requirements scale with the
size of sensor data, each set of tests is repeated with the depth image decimated
to the following sizes 640x480, 640x240, 320x240, 320x120, 160x120. All of the
collision checkers are tested using the exact same series of sensor data and candidate
poses. The collision checkers are evaluated offline one after the other, each testing
all poses on all images.

The table demonstrates that the data structures have poor scaling properties when
increasing the amount of data to process. Real-time operation requires significant
decimation of the input data, thereby losing important structural knowledge of the
local environment. Though the decimation enables real-time processing for small
compute platforms as would be deployed on weight restricted robots, like quad-
copters, it does not scale well for mobile robots without these restrictions. At full
resolution, the time cost of conversion can exceed the data arrival times for sensors
operating at typical frame rates (presumed to be around 30Hz).

Real-Time Egocentric Navigation Using 3D Sensing 19

100 101 102 103 104 105

10−1

100

101

102

103

104

Collision Checks

To
ta
lT

im
e
(m

s)

PiPS: Depth Image

640x480
320x240
160x120

100 101 102 103 104 105

10−1

100

101

102

103

104

Collision Checks

To
ta
lT

im
e
(m

s)

k-d Tree

640x480
320x240
160x120

100 101 102 103 104 105

10−1

100

101

102

103

104

Collision Checks

To
ta
lT

im
e
(m

s)

Octree

640x480
320x240
160x120

100 101 102 103 104 105

10−1

100

101

102

103

104

Collision Checks

To
ta
lT

im
e
(m

s)

Unstructured Pointcloud

640x480
320x240
160x120

Fig. 8 Semilog plots of the total time to initialize data structures with one sensor input and to
perform N collision checks. From left to right, the methods tested are depth image (PiPS), kd-tree,
octree, and point cloud.

The next performance metric is the average time required to collision check a
single candidate pose of a robot. All else being equal, a smaller value will allowmore
poses to be tested in a given time frame. For the purposes of these tests, we assume
a cylindrical robot. Depth image collision checking uses the approach described in
§5.1. The point cloud approach naively loops through all points, checking if any lie
inside the specified cylindrical region. The k-d tree approach first queries the tree for
any points lying within a sphere bounding the candidate robot pose cylinder and then
checks if any of these are within the cylinder. The octree approach uses the Flexible
Collision Library (FCL) [104] to check for collisions between the populated octomap
and a cylinder. We measure the average times required to collision check a candidate
robot pose for several candidate resolutions and report the results in Table 3. The table
demonstrates why some researchers choose to employ specialized data structures,
as their collision checking time cost can be quite low and nearly constant versus
image resolution. Once the data structure has been populated, collision checking is
the lowest cost and practically negligible in comparison to the preparation time. The
PiPS depth image approach, on the other hand, has a larger resolution dependent
time cost. The value of a PiPS approach lies in the total cost.

The results in the Tables indicate that using the depth image approach can result
in significant time savings, so long as the number of collisions tested can be kept low
enough. While the per-collision check time of the depth image approach is not as
low as that of the k-d tree, the initialization time of the depth image data structure is
much lower than that of the k-d tree. For example, with 640x480 sensor data, a depth
image approach can initialize its data structure and then perform over 600 collision
checks in the time it takes the k-d tree to just initialize. The graphs in Fig.8 compare
the total time for initializing the data structure and performing a given number of
collision checks across the different approaches. Both axes have log spacing. The
value of the k-d tree and octree approaches lies in the near flat curves for less than
100 collision checks, and the relatively low slopes after that. In contrast, the PiPS

20 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

depth image approach has a mostly linear curve, just like the point cloud approach,
albeit with an improved base cost. When the expected number of collision checks is
relatively low, the depth image approach is significantly faster. Identifying where the
depth image curves cross a comparison strategy indicates howmany collision checks
should be performed to achieve an equal compute time. Similar findings should hold
for robots with different geometries, however the slopes may differ.

Importantly, during actual deployment, the robot will not be evaluating new
trajectories at every frame. Rather, the first step in the process is to test the current
local path for feasibility. If it is feasible, then the navigation system continues to
drive along the local path. New path sampling, scoring, and testing happen when
an obstacle is detected along the current local path or the robot nears the terminal
point of the given path. Evaluating the time cost to collision check the current path,
it is clear that the PiPS approach has a significant advantage as it can perform
this check and determine the feasibility of the current path before any of the other
methods can even initialize, even if the comparison is between a full resolution PiPS
implementation and most decimation levels for the alternative implementations.
The time cost for PiPS to perform this check is 6.2ms, 3.6ms, and 1.3ms across
the resolutions evaluated, for the case that the number of robot poses to test in the
current trajectory is 100. This time will decrease as the robot moves along the current
trajectory.

5.2 Egocylindrical Perception Space for Enhanced Awareness

Though navigating with PiPS using trajectories that map into the current sensing im-
age domain is collision free [100], the published approach employs simple straight
line trajectories. Except for the floor space immediately in front of the robot, the
sampled trajectories map the robot into the depth image. However, visual sensors
have a limited field of view when compared to laser scanners (usually around 60-90
degrees horizontally versus 270-330 degrees horizontally), thus restricting trajecto-
ries to the field-of-view is quite limiting. DWA andmany other local planners sample
a richer trajectory space whereby some trajectories leave the visual sensor’s FOV.
Not factoring in these trajectory segments for trajectory scoring or collision checking
leads to unsafe navigation. Much like a local cost-map accumulates and propagates
occupied points, the local PiPS module requires the ability to accumulate, propagate,
and retain previously seen perceptual information lying outside of the current FOV.
This will be done using the egoclindrical image space [105], another 2.5D image
space representation whose theoretical domain extents surround the robot. Due to the
nature of camera projection equations, which require positive z-values in the camera
frame, traditional depth images cannot retain information of world geometry behind
the robot. Furthermore, the homographic projection involved in traditional pinhole
models requires an infinite image region to map the forward-facing half-plane to
an image. The egocylindrical perception-space representation avoids these model-
ing degeneracies. World points from sensors are projected onto a virtual cylinder

Real-Time Egocentric Navigation Using 3D Sensing 21

surrounding the robot and are propagated as the robot moves. The surface of the
cylinder is discretized into a 2D grid.

Whereas the egocylindrical image in [105] stores stereo disparity values, the
egocylindrical image here stores the ranges corresponding to each point on the virtual
cylinder. In relation to the previous section, §5.1, the only modification required is
on the image domain and the projection equations for rendering the depth image
measurement (now as an egocylindrical image). The left side of Fig.9 visualizes
the egocylindrical (image or perceptual) representation. The color coding indicates
distance of world points from the sensor’s optical origin. The right side provides
a third person view of the scenario, simulated using ROS/Gazebo. The simulated
sensor in this scenario has a forward facing field of view of 60 degrees.

When the sensor is a depth sensor, then the pixel depth data is based on the ray
projecting out from that pixel. Mapping the depth value to a range value requires
factoring in the ray information. Using the homogeneous image ray representation
with unit z-coordinate, the egocylindrical range is

ρ = Dm(rim)
�������

�������

xray (rim)
yray (rim)

1

�������

�������
= Dm(rim)ρray (rim), (3)

where (xray, yray) are the important ray coordinates obtained from the image pixel
coordinates rim, and ρray is the corresponding length of the ray when treated as
a vector. For efficiency purposes, the function values ρray : I 7→ R+ should be
precomputed and stored in an image whose dimension is the same as the depth
image for direct lookup. Note that the camera convention is for the z-coordinate
to point along the optical axis and for the x-coordinate to be horizontal with the
y-coordinate pointing downwards.

Themapping of the depth value to the egocylinder coordinates involves computing
the angle coordinate θ and the height value zcyl , as per

θ = Arg(xray (rim) + j) = θim(rim)
zcyl = Dm(rim)yray (rim)

(4)

where the constant imaginary term j is due to the unit z-coordinate in the ray
representation. As above, for computational efficiency, the θim : I 7→ R and yim :
I 7→ R functions should be precomputed over the image domain. If the sensor is
a range sensor, the ray will have unit length rather than a unit z-coordinate. The
appropriate modifications of the above equations will be needed.

These points then get mapped to egocylinder image coordinates rcyl ∈ Icyl using
the homogeneous egocylinder projection matrix Kcyl ,

rcyl = Kcyl

θ
zcyl

1

where Kcyl =

[
fh 0 hc

0 fv vc

]
, (5)

22 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

Fig. 9 Gazebo/RViz visualization of virtual egocylinder (left) and the environment it represents.
Range colormapped from near to far goes from red to blue/purple.

for fh = fv = cot(2π/ncols), hc = ncols/2, and vc = nrows/2, where nrows × ncols
are the egocylinder image dimensions (note that vc can be shifted if the domain
is biased upwards or downwards). To identify the appropriate bin to map the point
into, the decimal coordinates rcyl should be discretized to whole numbers. The
Cartesian coordinates of the point are stored in the bin B = Bego (rcyl) contained
at the discretized coordinate location brcylc, where Bego consists of all bins in the
egocylindrical map representation indexed by discretized coordinate locations.

To generate a range map using the egocylindrical representation, it suffices to
compute the range of the point in each bin. For shorthand, we write

Dm(rcyl) = ρ(Bego (rcyl)) (6)

which then renders an egocylindrical range image of all points stored in memory.
When updating the egocylindrical representation with recently sensed depth or range
information, the new data overwrites the stored data.

Synthesis of a hallucinated egocylindrical image employs the egocylindrical pro-
jection equations instead of the standard pinhole projection equations. Collision
checks involve the same conceptual procedure described in §5.1, but with ego-
cylindrical range values instead of depth values. The time cost to perform collision
checking with egocylindrical images is close to that of traditional depth images, thus
the egocylindrical collision time cost curves resemble those of Fig.8.

Egocylinder Propogation

Propagation of the stored points involves transforming them under the motion in-
duced pose change gmove ∈ SE(2) ⊂ SE(3) from one time point to the next, where
gmove gives the coordinate frame of the old robot pose relative to the new robot
pose. Define the egocylindrical coordinate vector pcyl = (ρ, θ, zcyl)T and the Carte-

Real-Time Egocentric Navigation Using 3D Sensing 23

sian coordinate vector p = (x, y, z)T . Consider the mapping from egocylindrical
coordinates to Cartesian coordinates Te2c and vice-versa Tc2e,

p = Te2c (pcyl) =

ρ cos(θ)
ρ sin(θ)

zcyl

and pcyl = Te2c (p) =

√
x2 + z2

Arg(x + j z)
y

, (7)

both with reference to the viewer/camera frame. The new egocylindrical coordinates
p′
cyl

of a stored point pcyl are:

p′cyl = Tc2e ◦ gmove ◦ Te2c (pcyl). (8)

Identifying the new bin that the point should be moved to involves applying the
projection matrix Kcyl to the last two coordinates in pcyl mapped to homogeneous
form, then discretizing the resulting coordinate outputs. In the event that multiple
points map to the same bin, only the point with the lowest range is kept. To speed up
calculations, our implementation only keeps track of p, using pcyl solely to determine
in which bin to store p.

With propagated and depth image updated egocylindrical data, synthesis of the
egocylindrical range image contains historical knowledge regarding the local en-
vironment, thereby mitigating the FOV issues of depth images. The egocylindrical
image enhances collision-checking and collision-free navigation when performing
tight cornering and maneuvering around obstacles. Figure 10 depicts a scenario
whereby the mobile robot is close to a signpost and with the signpost outside of the
field of view, as noted by the lack of a signpost in the depth camera image. However,
the egocylindrical data structure does contain points from the signpost’s pole. It is
the small blue point cloud near the robot in Fig.10c. The point cloud was generated
from the egocylindrical data (using Te2c). The egocylindrical representation is not
guaranteed to be correct, as world geometry that was never seen does not exist in
the model and is not propagated. Thus it is possible to conclude that a trajectory
is safe though it may not be. Forward navigating mobile robots usually exhibit this

(a) Gazebo World (b) Depth Camera (c) Egocylinder Points

Fig. 10 Visualization of an out-of-FOV obstacle scenario. The robot needs to turn right to avoid
colliding with the signpost, which is currently outside the FOV of the depth sensor. Since the
signpost was visible to the depth sensor previously and is in the egocylinder, it can be avoided.

24 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

problem at the beginning of a global trajectory and less so later on due to the fact
that forward travel will propagate the seen world out into the unseen portions of the
egocylindrical image. The main danger lies when performing high angle turning into
unsensed world regions. The role of the global path and the local planner scoring
functions is to prevent these situations from happening by giving preference to safer
trajectories.

5.3 Egocircular Representation and Trajectory Scoring

The egocylindrical perception space representation provides an efficient viewer-
centric means to collision check based on current and previous perception space
measurements (e.g., depth, range, or disparity). However, it is not an efficient means
to score trajectories for collision assessment purposes. The relatively high slope of
the PiPS collision-checking cost means that only a small set of trajectories should be
tested for collision checking. Thus, the typically large set of trajectories sampled in
sample-based methods should be rank ordered with only the top few being evaluated.
Additionally, the PiPS approach can only give an indication of safe or unsafe. It
cannot score based on proximity to obstacles or other pertinent geometry or goal
information. In traditional local planners, the transformation of sensor-based obstacle
geometry to occupancy grids occurs because of the ease with which distance or
proximity information can be generated (though there is a significant time cost if
the occupancy grid is 3D). The distance information is essential to scoring and rank
ordering the sampled trajectories.

For fast trajectory scoring, amore compact and efficient representation of the local
collision space is necessary. For that we employ an egocircle, which can be thought
of as a flattening of the egocylinder image model to a 1D space or laser scanner type
of space; the true calculations will be different but the conceptual idea is correct.
The egocircle is an egocentric polar obstacle data structure reminiscent of the data
structure used in polar based methods [44, 45, 47, 48]. Its purpose is to populate,
propagate, and store the local environmental history necessary for approximately
and efficiently scoring candidate trajectories relative to obstacle proximity, goal
point proximity, and global path following. These scores provide ranked orderings
of the sampled trajectories.

The local planner block depicted in Fig.6 initially samples a rich set of trajecto-
ries, scores them according to predetermined criteria using the egocircle data, then
collision checks them according to their score ranking using the egocylindrical rep-
resentation and PiPS collision-checking. The first sample to pass the collision-check
module is the trajectory to follow for the next local planning period. Because colli-
sion checking occurs using the egocylindrical representation, the egocircle scoring
does not need to be a strict or conservative scoring method. Rather it can be liberal
and admit collision inducing trajectories. Its design is meant to provide efficient
scoring, data storage, and propagation implementations.

Real-Time Egocentric Navigation Using 3D Sensing 25

Egocircle Measurements, Storage, and Propagation

Since the egocircle collapses the 3D information down to 2D information (angle
and range), the data format of the egocircle measurement module is compatible
with a laser scan. The laser scan information populates the egocircle data structure,
whose contents get propagated and updated as the robot maneuvers. Similar to a
laser scanner, the egocircle evenly divides the angular space into ncirc cells or
buckets, with each containing a list of 2D points that fall within the cell’s angular
range. Generating an egocircular map from the stored data entails performing a min
operation over all egocircle buckets individually. For shorthand, we write

Lm(rcir) = min(ρ(Lego (rcir))), (9)

where rcir is the coordinate indexing into the egocircle structure, and Lego is the
collection of buckets. The process above renders a 1D measurement “image” Lm

from all points stored in memory. It is equivalent to a 360 degree laser scan sensor
reading whose angular resolution is ncirc/(2π).

Following §5.2, propagation of the stored points involves transforming them under
the motion induced pose change gmove ∈ SE(2) from one time point to the next,
where gmove gives the coordinate frame of the old robot pose relative to the new
robot pose. Define the egocircular coordinate vector pcir = (ρ, θ)T and the Cartesian
coordinate vector p = (x, y)T . Consider the mapping from egocircular coordinates
to planar Cartesian coordinates Tl2p and vice-versa Tp2l ,

p = Tl2p (pcir) =
[
ρ cos(θ)
ρ sin(θ)

]
and pcirc = Tp2l (p) =

[√
x2 + y2

Arg(x + jy)

]
, (10)

both with reference to the viewer/camera frame modeled as an SE(2) frame. The
new egocircular coordinates p′cir of a stored point pcir are:

p′cir = Tl2p ◦ gmove ◦ Tp2l (pcir). (11)

Identifying the new bucket that the point should be moved to involves partitioning
the angular values according to the egocircle’s angular resolution. To speed up
calculations, our implementation stores points using Cartesian coordinates and keeps
track of the minimum range per cell. Points are removed once they lie outside the
radius ρmax associated with the local egocircular map. When incorporating new
measurements from the most recent depth image, range-based clearing occurs with
the stored egocircle data.

This design allows the egocircle to track multiple points in each direction and to
quickly return the distances to the nearest obstacle in each direction.With propagated
and depth image updated egocircle data, synthesis of the 1D range image per Eq.9
contains historical knowledge regarding the local environment. Figure 11 depicts
a navigation scenario for a simulated Turtlebot mobile robot. The robot travels
upwards relative to the overhead views in the bottom row, turns right, then proceeds
rightwards. Visualizations of egocircle generated measurements are in the top row

26 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

(but with a coordinate system orientation roughly matching that of the world). The
red lines delineate the FOV of the mobile robot. Historical data sensed by the robot
is contained in the egocircle measurements outside of the FOV. Note that, in the
rightmost egocircle measurement, a section of the upper surface of the wall (just
below and to the left of the robot) does not exist in the egocircle data structure. As
the robot turns towards the right, FOV limitations mean that this small portion of the
wall never gets sensed, hence the missing data. By maintaining a local, approximate
cost map in planar space, the egocircle provides a means to rapidly score candidate
robot trajectories. The following subsections describe the different cost functions
evaluated and contributing to the total score of a candidate trajectory.

Fig. 11 Visualizations of the egocircle measurement predictions based on the stored data. The top
row depicts the egocircle measurements where only those points that would be visible to a laser
scanner are plotted (occluded points are not). The origin corresponds with the camera origin, but
the orientation of the egocircle measurement has been adjusted to roughly align with the global
overhead views of the bottom row. The red lines are FOV limits.

5.3.1 Egocircle Trajectory-Based Cost Functions

The purpose of the egocircle representation is to replace the grid-based cost functions
utilized by DLP and many other non-perception space methods. Figure 12 depicts a
navigation scenario with the global trajectory (in color green), the actual navigated
trajectory (in color red), and a candidate future trajectory (in color yellow). This can-
didate trajectory should be scored in order to identify an appropriate fitness relative
to the constraints of following the established trajectory and avoiding collisions. The
local egocircle map contains only the world sensed information within the depicted
radius. It generates a local egocircular range scan from the information (color blue),

Real-Time Egocentric Navigation Using 3D Sensing 27

Fig. 12 Local egocircular representation with global path (green), sampled local path (yellow),
local goal (orange arrow) and odometry (red arrows). The robot moves leftwards.

which is used to calculate some of the trajectory costs. The particular costs needed
for a functional Move Base implementation include the obstacle cost function, the
go-to-goal cost function, and the path comparison cost function. These costs were
depicted earlier in Fig.5 based on a local occupancy grid. A description of these costs
and the analogous egocircle implementation representation will be given below.

The trajectory scoring is meant to provide a rank ordering of the sampled tra-
jectories from best to worst for prioritizing collision checking and trajectory safety
assessment. It does not need to involve a precise representation of the robot model
nor scoring functions, as long as the model is approximately correct and the scoring
functions are monotonically correct over large swaths of the local area around the
mobile robot. Therefore several simplifications are made to improve computational
runtime.

An important simplification is using an inflated egocircle range scan in order to
treat the robot as a point for certain tasks. Conceptually, a circle of radius rins is
placed at the location of each point represented by Lm and a new egocircle scan is
generated based on the ranges to these inflated points (see Fig.13). The inscribed
radius rins of the robot is used to ensure that the result is liberal. This requires first
finding the subset of points in the egocircular map within a specified distance ds of
a given pose ps = (ρs, θs)T . We approximate this as:

28 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

(a) Simulated Environment (b) Original & Inflated Egocircles

Fig. 13 Overhead views showing the simulated environment (left) and the egocircle representation
(right). The original egocircle is shown in black while the inflated egocircle is shown in cyan.

β(ps, ds) =
{

pb ∈ Lm

���� (θs − θd) 6 θb 6 (θs + θd)
}

(12)

where θd = ds/ρs .
Let Tm2p (L, i) map the ith element of egocircle range scan L to egocircular

coordinates. The inflated egocircle can then be expressed as follows:

Lin f l (i) = min
j∈B(i)

Lm(j) − rins , where

B(i) =
{

j ∈ ncirc
���� Tm2p (Lm, i) ∈ β(Tm2p (Lm, j), rins)

} (13)

Obstacle Cost Function

The obstacle cost function reflects the cost of traveling close to obstacles. The
obstacle cost of a trajectory is a function of the obstacle costs of the poses in the
trajectory. The obstacle cost of query point p is a function of the distance to the
nearest obstacle point, represented as dmin(p). The obstacle cost cobs is

cobs (p) = cobs ◦ dmin(p)

=

−1, if d < rins
c̄obs exp−w(d−rins), if rins ≤ d < rmax

0, otherwise

(14)

Real-Time Egocentric Navigation Using 3D Sensing 29

where d = dmin(p), and c̄obs is a predetermined constant cost. The values rins and
rmax represent the nearest permissible distance and the distance beyond which an
obstacle has no cost. An obstacle cost of -1 means that a pose definitely collides.
Depending on the geometry of the robot (i.e., if it is elongated or otherwise not a
circle), it is possible for colliding poses to receive nonfatal obstacle costs. If any pose
in a trajectory collides, the trajectory is assigned the fatal cost of -1. Otherwise, the
trajectory is assigned the obstacle cost of the last pose in the trajectory.

The standard costmap-based obstacle cost function uses a distance map to imple-
ment dmin. The distance map is computed such that each cell contains the Euclidean
distance to the nearest occupied cell in the occupancy grid. The egocircular repre-
sentation does not admit such a calculation since it is a boundary based polar model
of 3D space (it does not measure space according to discretized area or volume).
Instead, dmin is brute force computed between the query pose and a local subset of
the egocircle as follows:

dmin(p) = min
b∈B

distp (p, b)) (15)

where B = β(p, rmax) and distp returns the distance between polar points p and b
using the law of cosines.

To understand this distance based cost function, it is best to examine the first
column of costmap images in Fig.14. The red regions correspond to 0 values as
those locations are far from the obstacles, which are the black regions in the image.
The coloring trend goes to blue/purple as the distance from the query location to
the nearest obstacle point lowers to be within the interval [rins, rmax]. The black
obstacle regions would give −1 values. These should be very large or infinite costs,
however the Move Base implementation checks for–and rejects trajectories with–
negative scores. The top image, Fig.14a, is the grid-based costmap while the bottom
image, Fig.14d, is the egocircle costmap evaluated using Eq.14 over the same grid
as the costmap, where each point in the 2D grid is converted to polar representation.
The two functions have similar scores outside of the occupied regions. The pairwise
computations for the egocircle implementation, per pose tested, are quadratic but
based on two low cardinality point sets. The grid-based distance computing scheme
is linear in the local occupancy grid area [101], thus it too is quadratic in time cost but
with larger base values. Once computed, grid-based trajectory costs are constant per
robot pose tested. As with collision checking, the data preparation time cost is near
zero for the perception space approach but has a high slope in per pose scoring time.
The world centric model has a non-negligible time cost to build the scoring maps and
a small constant cost to score per pose. The perception space method will be faster
than the grid-based approach until a large enough quantity of poses is sampled. The
number of poses to score grows linearly with the number of trajectories to score.

30 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

(a) Obstacle cost. (b) Local goal cost. (c) Path cost.

(d) Obstacle cost. (e) Local goal cost. (f) Path cost.

Fig. 14 Visualization of the trajectory scoring as cost maps computed on an occupancy grid (top
row) and from egocircle (bottow row). The grid points are converted to polar representation and
scored according to the described scoring functions. Low cost is red and high cost is blue/purple.
Points lethally close to obstacles are black in the occupancy grid and purple in the egocircle. The
brown curve is the global path to follow.

Goal Point Cost Function

The purpose of this cost is to reward candidate trajectories whose terminal points
are close to the local goal point. In a grid-based scoring strategy, the local goal is
selected as the first pose on the global path that exits the local costmap. The distance
map for the go-to-goal cost warps around obstacles and reflects the true cost-to-go
if the occupancy map is correct (see Fig.14b). Under an egocircle representation,
two deficiencies occur: (i) the true cost-to-go requires more computation when there
is an obstacle between the evaluation point pcir,i and the local goal p∗

loc
, and (ii)

the true cost-to-go cannot be ascertained when there is an obstacle between the
robot’s camera (located at the origin) and the local goal. For the first case, we simply
compute the distance as though there were no obstacles. We avoid the second case by
selecting local goal as the last unobstructed pose on the global path that lies within
the egocircle. Poses are classified as obstructed or unobstructed by using the inflated
egocircle rin f lated .

Let the index set J be defined as follows:

Real-Time Egocentric Navigation Using 3D Sensing 31

(a) No obstacle (b) Occluding Obstacle (c) Global Path Collision.

Fig. 15 Selection of local goal for goal point cost function without (a) and with (b) an occluding
obstacle. The right-most plot (c) depicts a scenario that would trigger global replanning.

J =
{

j ∈ N
���� g
∗
j = g∗(t j) for t j ∈ R+

}
(16)

where g∗(t) is the global path and t j indexes into it to create a set of global path
waypoints.

Pose ploc is unobstructed if ρloc < rin f lated (Angle(ploc)). Poses that are less
than 2 ∗ rins behind an inflated point are definitely in collision, but poses further
behind may simple be occluded. Consequently, we classify each pose as either safe,
colliding, or occluded. If g∗t j is safe and g∗t j+1 is colliding, the global path leads to
collision and replanning is triggered. Otherwise, the local goal is selected as follows:

p∗loc = g∗(t j) max
j∈J

j
���� dist(grobot, g∗(t j)) < ρcirc

and Lm ◦ Lin f l

(
Angle(g−1

robotg
∗(t j))

)
> dist(grobot, g∗(t j))

(17)

where g* is the global path and grobot is the SE(2) pose of the robot in the world
frame.

Figure 15 summarizes the different cases determining the selection of the local
goal. If there are no occluding obstacles, the local goal is the last pose on the global
path that lies within the egocircle radius (Fig.15a). Otherwise, the local goal is the
last unobstructed pose on the global path (Fig.15b). However, if the global path
definitely collides (Fig.15c), local planning is aborted and global replanning occurs.

This cost function is adapted to the star-like free space region associated to the
current robot pose and based on its local environment, as captured by Lm. It employs
the line-of-sight visibility property, from the robot pose (the origin of the egocircle)
to the goal point, to establish the scoring.

Visualization of the go-to-goal cost function is given in the second column of
Fig.14 for the grid-based method (top) and the proposed heuristic (bottom). The grid
point values would be the scores associated to the point pcir,i if it were located at
those grid points. Note that the location of the goal point p∗ differs between the two
methods. The important characteristic is that the proposed heuristic approximately

32 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

matches the monotonic increase in the go-to-goal cost of the equivalent occupancy
grid cost (see Fig.14b versus Fig.14e). The difference in the shape of the cost level
sets is due to the grid-based method using Manhattan distance rather than Euclidean
distance.

Path Cost Function

In addition to the go-to-goal cost, there is another cost associated to the global
path. This one scores the sample trajectory’s terminal point against the global path
to identify how close it is to a point on said path. Relying again on the star-like
properties of the free-space region described by the polar egocircle estimate Lm, any
point on the global path that is obscured by a point on the inflated egocircle is not
considered as reachable from the terminal point of the candidate trajectory. With the
index set J defined as in Eq.16, the local set of visible points on the global path is
the subset:

Jlocal =
{

j ∈ J
���� dist(grobot, g∗(t j)) < ρcirc

and Lm ◦ rin f lated
(
Angle(g−1

robotg
∗(t j))

)
> dist(grobot, g∗(t j))

}

(18)

where grobot is the SE(2) pose of the robot in the world frame. The set consists
of indices to unobstructed global path poses within the egocircle domain. Pose
obstruction is evaluated as in the goal cost function. The path cost is then

Cpath (p, Jlocal) = min
j∈Jlocal

dist(p, Pos(g−1
robotg

∗(t j))), (19)

where Pos(g) grabs the translational coordinates of the SE(2) element g. Again,
the distance calculation in the above equation uses the law of cosines to generate
the distance using polar representation for point positions. The cost is basically the
straight path length from the trajectory terminal point given by p to the path waypoint
in the robot’s frame given by Pos(g−1

robot
g∗(t j)). Global path waypoints obscured

by an obstacle do not factor into the cost. The third column of Fig.14 depicts the
traditional grid-based path cost (top) and the heuristic polar path cost (bottom). For
the latter, regions occluded by obstacles and lacking line of sight have a cost based
on the nearest visible path point. As with the previous cost comparison, the overall
trend matches between the two implementations in the free-space regions, with the
level sets once again having different shapes due to the different distance metrics
utilized.

Real-Time Egocentric Navigation Using 3D Sensing 33

5.4 Working with Stereo Cameras

With additional processing, stereoscopic camera configurations provide similar
structural information as depth or range sensors (as can multi-camera setups in-
volving more than two cameras with overlapping fields of view). The process for
estimating depth, triangulation, requires matching pixels on the left camera to those
of the right camera (the two pixels should represent the same world point, usually
on an object surface). A popular stereo configuration for robotic systems offsets two
cameras horizontally to provide image pairs similar to human binocular vision (see
Fig.16).

In the parallel stereo configuration, epipolar lines are horizontal lines in the
image plane (e.g., dash dotted line in the figure). For each pixel in the left image, the
corresponding pixel in the right image is on the epipolar line. Limiting the search to
a vicinity of the epipolar line constrains the pixel matching search space for more
efficient stereo matching. Image rectification can be applied first to transform them
into one common image plane so that all epipolar lines are horizontal.When rectified,
matching pixels are displaced horizontally between the left and right rectified images.
The disparity measures the pixel horizontal distance, usually in the r1 coordinate,
between two corresponding points in the left (L) and right (R) images, δ = r1

L − r1
R.

The depth value z is a function of the disparity and camera model parameters.

z =
b f 1

δ
(20)

where b is the baseline representing the distance between two camera centers, f 1 is
the focal length of the horizontal coordinate, and δ is the disparity.

Fig. 16 Stereo camera model [106]. (r1
L, r

2
L) and (r1

R, r
2
R) are coordinate systems of two image

planes. b is the baseline of stereo camera model. I1 and I2 are pixel values of the same target point
in the left and right image planes.

34 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

Following the taxonomy of stereo matching algorithms [107], approaches divide
into local and global methods. The traditional block matching algorithm is one of the
local methods. This algorithm first extracts a small patch around the pixel in the left
image, and horizontally shifts the patch along the epipolar line by candidate distance
values (in a predefined disparity range) in the right image. The estimated disparity
is the one that minimizes the difference between the patch in the left image and the
shifted patch region in the right image. This difference can be represented by cost
function. One traditional cost is the sum of squared differences (SSD).∑

(ζ1,ζ2)∈N (r1,r2)

(I1(ζ1, ζ2) − I2(ζ1 + δ, ζ2))2 (21)

where I1(ζ1, ζ2) is a pixel value in the left image and I2(ζ1 + δ, ζ2) is a pixel value
in the right image. Several alternative cost functions exist for the matching opti-
mization, such as normalized cross-correlation (NCC), sum of absolute differences
(SAD), mean of absolute differences (MAD), etc. [107]. [108] also introduces the
semi-global block matching algorithm that integrates local pixelwise matching and
global smoothness constraints. This approach has better performance when dealing
with varied illuminations, occlusions and low texture surfaces. Moreover, in order to
reduce computational complexity and obtain smoother disparity, some optimization
and refinement techniques are integrated [107]. Real-time disparity estimation im-
plementations exist based on specialized hardware approaches, such as via onboard
FPGA [109, 110] or graphical processing units [111]. Once the disparity image is
estimated, generation of the depth image using Eq.20 is immediate and can be used
within the PiPS local planner. Though [105] employs disparity space for navigation,
we advocate its conversion to depth space due to the fact that calculation of the
equivalent Cartesian point representation is more efficient for propagation of the
points in the egocylinderical and egocircular representations (and easier to write as
a set of operations).

6 Benchmarking Navigation Methods

To aid in the evaluation and comparison of navigation frameworks and strategies,
this section describes a set of ROS/Gazebo based environments and associated ini-
tial/terminal point synthesis methods for generating repeatable navigation scenarios.
While it is preferable to deploy in real-world scenarios, doing so is more difficult due
to the need for the other components of a robotic navigation system to be working
perfectly, the setup and real-estate costs of creating andmaintaining the environment,
the lack of configuration flexibility [112]. Plus more universal evaluation by other re-
searchers in these actual environments would be difficult. The value of ROS/Gazebo
is that highly repeatable experiments are possible in a diverse array of worlds. The
same experiments can be performed by anyone with access to a system configured
with ROS/Gazebo and to our publicly available benchmark worlds and testing con-

Real-Time Egocentric Navigation Using 3D Sensing 35

figurations [113]. Furthermore, in our experience developing the original local PiPS
algorithm [100], we found little difference in performance between deploying in a
well designed Gazebo world and in our actual office environment.

The testing protocol for the benchmark scenarios includes Monte Carlo runs em-
ploying multiple point-to-point navigation instances that generate statistical outcome
models for comparison purposes. Important metrics include completion rate, path
length, and travel time. Though Gazebo simulations are not perfectly deterministic,
the outcomes should be close enough that the final Monte Carlo statistics will have
low variation (i.e., inter-experiment variance is low).

6.1 World Synthesis

Because navigation is a generic capability expected of mobile robots, the environ-
ments where robots may be deployed will vary in scale, structure, and obstacle
density. The proposed benchmark consists of several synthetic worlds modeled af-
ter environments observed to exist here on our university campus. These synthetic
worlds are called sector world, campus world, and office world.

1. SectorWorld. (Fig.17a) The sector world consists of a single large room, partially
divided in themiddle by awall running from left to right. It is intended to represent
locations that are essentially large open areas dotted with a wide assortment of
obstacles. The lack of known obstacles means that the global planner will generate
simple piecewise linear paths from a start pose to a target goal pose.

2. Campus World. (Fig.17b) The campus world is intended to model the outdoor
free space of a university campus, where adjacent structures and landscaping force
one to follow specific paths, and open areas admitmore free formmovement across
them. Consequently, it consists of several relatively large open areas connected
by narrower corridors. The narrow corridors are well defined and generally clear
of miscellaneous obstacles. The open areas (e.g., open quads) are presumed
to have multiple purposes and therefore will contain a randomized assortment
of obstacles. When considering particular global planning or world modeling
strategies, some areas of this world are best simplified through a graph-based
or topological model of the space (e.g., corridors linking open spaces), whereas
other areas benefit from spatial world models.

3. Office World. (Fig.17c) The office world is based on digital architectural floor
plans of the fourth-floor of the building containing our lab, provided by the interior
designers of the building after it was remodeled. It serves as an example of a real
office indoor scenario, with long hallways connecting open cubicle areas, enclosed
offices, and larger conference rooms and laboratory spaces.While halls are narrow
enough to be easily blocked, there are generally alternate routes available. Doors
that are usually closed have been replaced with walls.

For each of these worlds, there is an associated global map containing only the
permanent structural elements (the walls). Global paths generated from the map

36 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

(a) Sector World. (b) Campus World. (c) Office World.

Fig. 17 Overhead views of the benchmark worlds. The 10m yellow bar provides a means to assess
the scaling of the three worlds. The office world is rotated.

will typically be infeasible due to unmodeled obstacles. Some paths may be blocked
for the narrower passages, should there be objects (randomly) placed within them.
The next section describes how specific navigation scenarios are configured and
instantiated.

6.2 Scenario Configuration

Monte Carlo runs provide statistical insight on the performance outcomes from a
large sample of data. In each Monte Carlo run, one or more characteristics of the
experiment are determined by a provided random seed. The seed ensures that exper-
imental conditions are variable and repeatable. An important aspect of a scenario
configuration is the type and placement of obstacles. We distinguish between two
general categories of obstacles: laser safe and laser unsafe. Laser safe obstacles have
vertical sides or an invariant occupancy profile from the floor up to the height of
the robot. This property ensures constant cross-sectional geometry and satisfies the
assumptions of laser-scan based planning approaches regarding world geometry for
successful collision avoidance. Laser scan approaches should be able to safely avoid
laser safe obstacles but may not be able to avoid laser unsafe obstacles. Figure 19
depicts some of the safe and unsafe obstacles available for the scenarios, as available
through the Gazebo model database. The specific randomized configurations for
each world are as follows:

1. Sector World. (Fig.18a) Starting poses are sampled from a line (depicted in red)
running inside and parallel to the north wall of the world and place the robot
facing inwards. The coordinates for this region are x ∈ [−9, 9] and y = −9. Goal
poses are sampled from a parallel line just inside the south wall (depicted as the
green line), whose coordinates are x ∈ [−0, 9] and y = 9. All navigation tasks
require traveling from one side of the world to the other. The area between the start

Real-Time Egocentric Navigation Using 3D Sensing 37

(a) Sector World. (b) Campus World. (c) Office World.

Fig. 18 Worlds annotated with start (red) and goal (green) points or regions. For sector world,
the start and final points are selected from regions. The campus world has a single start point
(larger red circle) and multiple goal points (green circles). The office world start and goal points
are randomly chosen from the red circles in the map. The worlds also show examples of random
positions populated with obstacles. The blue objects are randomly placed laser safe obstacles. The
smaller red dots are laser unsafe obstacles.

and goal lines is populated by laser safe obstacles at fixed locations in the world.
Low and medium density configurations exist. Manual placement of the obstacles
was done with the aim of creating an approximately uniform distribution with
moderate clearance between obstacles. If desired, laser unsafe obstacles can also
be randomly placed throughout the same area of the environment.

2. Campus World. (Fig.18b) For the campus world, there is one start pose (the red
dot) and seven candidate goal poses. A given scenario will randomly select one
of these predefined goal poses. A specified number of obstacles are uniformly
distributed among the primary open areas of the world (random position and
orientation). The obstacle type is randomly chosen as either a blue cylinder (laser
safe) or a small red box (laser unsafe). As obstacles are placed, a minimum
obstacle-spacing threshold ensures that the navigation task remains feasible.

3. Office World. (Fig.18c) In the office world, there is a fixed set of locations (the
red points). Start and goal poses are randomly selected from a list of locations
around office. In order to reduce the duration of experiments in this significantly
larger world, the goal pose is randomly selected from only the three poses nearest
to the start pose. Obstacles are randomly placed in designated regions (free space
between start/goal poses and corriders) using the same approach as in Campus
World.

6.3 Benchmarking

Benchmarking a particular navigation strategy involves multiple runs with a pre-
determined set of random seeds. Comparison with another navigation method re-

38 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

Fig. 19 The left area depicts laser safe obstacles while the right area depicts laser unsafe obstacles.
The top-right obstacle is a custom box with very short height that cannot be detected by the laser
scan.

quires using the same random seed set. An experiment instance proceeds through
four stages:

1. World Setup: The test Gazebo world is loaded and a given robot model is placed
within in it.

2. Task Setup: The robot is moved to the starting pose and all obstacles are added
to the environment. The specified robot navigation method is then initialized.

3. Navigation: The goal pose is sent to the robot controller and a timer is started.
The experiment remains in this stage until one of the following conditions is met:

a. Succeed: the robot reaches the goal without collisions;
b. Bumper Collision: the robot bumps into an obstacle en route to the goal;
c. Aborted: the controller reports that planning has failed;
d. Timed out: the timer reaches 10 minutes.

During execution of the navigation scenario, pertinent scoring metrics are main-
tained or accumulated as needed.

4. End: The value of the timer is saved as ’path time’. The final path length is also
saved, alongwith the condition that endedNavigation. The controller is shutdown.

To compare performance, several metrics are calculated and stored for each
experimental instance. Popular metrics for evaluating robot navigation frameworks
include success rate, defined as the number of successful runs divided by the total
number of runs; path distance, defined as the robot path length travelled from start
to goal; and path time, defined as the time required for robot to reach the goal. The
latter two statistics are computed from the subset of successful runs. These metrics
measure the performance of planners fromdifferent perspective including robustness,
efficiency, and optimality. A good planner should perform well in these metrics.
Potential navigation parameters to consider or configure include the replanning rate,
the recovery behaviors, and the local map radius.

Real-Time Egocentric Navigation Using 3D Sensing 39

(a) Turtlebot (b) Pioneer

Fig. 20 Robot models used in the experiments. Green boundaries are footprints of robots.

7 Navigation Experiments

Evaluation of the described perception space approach to navigation (PiPSDLP) will
consist of Monte Carlo testing on the benchmark navigation scenarios. Comparison
will be made with the standardMove Base implementation (baseline DLP), designed
for use with a laser scanner. The first scenario will test in the sector world, with both
laser-scan friendly and laser-scan unfriendly sector world instances. No laser unsafe
obstacles are added to friendly instances, while 30 are added to unfriendly instances.
The purpose of the experiment is to show that the perception-space approach perfor-
mancematches the classical methods under environmental conditions appropriate for
laser scanners and outperforms the classical methods under more general conditions.
The second set of scenarios will test the perception space and classical navigation
algorithms on the other two benchmark worlds, campus world and office world.

An additional experimental variable will be themobile robot type, where the robot
geometry will vary. The two robots will be the Turtlebot, Fig.20a, and the Pioneer
mobile robot, Fig.20b. The Turtlebot is a two-wheel differential drive robot platform
with cylindrical robot configuration and a circular base. For collision checking
purposes, it is modeled as a cylinder with 0.2m radius. Depth images on the Turtlebot
are captured by a Kinect camera. The Pioneer is a four-wheel skid-steer drive robot
platform with a non-circular base, and non-cylindrical configuration. The robot is
modeled as a 0.56m x 0.5m rectangular box and configured to have a Realsense
R200 depth camera. Since we are only evaluating the ability of the controllers to
handle the changed geometry, the Pioneer is simulated as a Turtlebot base with the
Pioneer’s chassis geometry on top. Since neither of these robots is equipped with a
laser scanner, we use the Depth Image to Laser Scan ROS package [114] to create
virtual scans based on the 10 rows of pixels nearest the optical center of the depth
camera. Each scenario involves 50 Monte Carlo experimental runs for each local
planner and each robot model.

Global replanning and recovery behaviors (see §5) are both enabled in all exper-
iments. The time threshold of recovery behavior is defined as controller_patience.

40 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

Table 4 Common Parameters
Goal

Position
Tolerance

Goal
Orientation
Tolerance

Global
Replanning
Frequency

Controller
Patience

1m 2π 1 3

Planner
Patience

Local
Planning
Frequency

#v
Samples

#ω
Samples

5 5 6 20

The purpose of the recovery behavior for baseline DLP is to clear space in the local
costmap. Since PiPS DLP does not use a local costmap, its recovery behavior is al-
tered to rotate the robot in 90◦ increments in an attempt to point the robot away from
whatever was obstructing it. Recovery behaviors are also used if planner_patience
elapses without a valid global plan being found. The size of the local region consid-
ered during local planning is also an important parameter. A 5mx5m square costmap
with 5cm resolution is used in baseline DLP, while an egocircle with 512 cells and
a radius of 3m is used in PiPS DLP. Common parameter values are given in Ta-
ble 4. The forward sim time values are different: 1s for baseline DLP, 2s for PiPS
DLP. Though PiPS DLP can be run with a local planning frequency of nearly 30Hz,
here we use the default frequency value of baseline DLP (5Hz) for all experiments.
The global costmaps of both approaches are populated using the virtual laser scans
described above. The global costmap of PiPS DLP is also populated with the loca-
tions of collisions detected by the collision checker. The values for all customized
parameters are available in the configuration files at [113].

7.1 Sector World with Laser Safe and Unsafe Obstacles

In the medium density sector world with laser safe obstacles, both baseline laser
scanner DLP and Ego-Centric perception-space planning have nearly 100% success
rates (see Table 5), which shows that our approach has similar performance under
normal environments. The failure case abbreviations are bumper collision (BC),
aborted (AB), and time-out (TO). The Pioneer and Turtlebot robots each only had
one AB out of 50 runs, with the rest being successful. The path lengths taken by all
of the robots were within 2% of each other, indicating that they all found comparable
paths. The completion times of the PiPS approach were close to but a few seconds
more than the laser scan baseline.

After randomly adding 30 laser unsafe obstacles with 1m and 1.2m minimum
distance between each other for the Turtlebot and Pioneer robots, respectively, the
success rate of the baseline laser scanner DLP drops to 40% and 24%. The ego-
centric PiPS approach still has good performance with a success rate of 94% and
84%, see Table 6. Again, the average path lengths and completion times of both
methods are similar, except for PiPS approach with Pioneer robot. The additional

Real-Time Egocentric Navigation Using 3D Sensing 41

Table 5 Results for sector world with laser safe obstacles.
Sector world with laser safe obstacles

Approach Success
Rate

Completion
Time

Path
Length Failures (BC / AB / TO)

Turtlebot
Baseline DLP 100% 40.98s 19.62m 0% / 0% / 0%
PiPS DLP 98% 42.96s 19.47m 0% / 2% / 0%
Pioneer
Baseline DLP 100% 43.42s 20.03m 0% / 0% / 0%
PiPS DLP 98% 46.36s 19.74m 0% / 2% / 0%

Table 6 Results for sector world with laser safe and randomly placed laser unsafe obstacles.
Sector world with laser unsafe obstacles

Approach Success
Rate

Completion
Time

Path
Length Failures (BC / AB / TO)

Turtlebot
Baseline DLP 40% 43.62s 19.68m 58% / 2% / 0%
PiPS DLP 94% 46.37s 19.68m 0% / 6% / 0%
Pioneer
Baseline DLP 24% 43.45s 19.76m 76% / 0% / 0%
PiPS DLP 84% 56.64s 20.51m 8% / 8% / 0%

maneuvers necessary for keeping clear of laser unsafe obstacles led to reduced
forward speeds for PiPS, yielding completion times 30% larger than the baseline.
The success rate of Pioneer PiPS DLP is lower than that of Turtlebot. Most of the
additional failure cases are caused by bumper collision. Due to the geometry of
Pioneer and the programming of the recovery behavior, it can collide with obstacles
while executing the recovery behavior.

7.2 Campus World and Office World

In campus world and office world, 50 obstacles are randomly selected from laser
safe and unsafe obstacles with the same minimum distance offsets as in sector world.
In all cases, the PiPS modification has improved success rates versus the equivalent
baseline implementation. Furthermore, the success rate of the baseline navigation
scheme decreases when switching from the cylindrical robot to the rectangular box
robot while the success rate of PiPS DLP does not. PiPS completion times continue
to be a few seconds longer, as seen in the Sector world cases, while the path lengths
remain similar to those of the baseline cases. Having roughly comparable path
lengths indicates that the scoring system of the egocircle representation is capable of
providing a ranked ordering of the sampled trajectories similar to that of the baseline
local planner. In campus world, the completion rates of Pioneer PiPS DLP are larger
than those of Turtlebot.One reason could be the differentminimumdistances between
obstacles (1.2m for Pioneer, 1m for Turtlebot). Though the distances are designed
to give similar clearance to both robots, the greater spacing may disproportionately

42 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

Table 7 Results of campus world with randomly placed laser safe and unsafe obstacles.
Campus world with randomly selected laser safe and unsafe obstacles

Approach Success
Rate

Completion
Time

Path
Length Failures (BC / AB / TO)

Turtlebot
Baseline DLP 68% 38.82s 18.44m 30% / 2% / 0%
PiPS DLP 80% 50.03s 20.37m 0% / 20% / 0%
Pioneer
Baseline DLP 50% 40.17s 19.26m 48% / 2% / 0%
PiPS DLP 88% 49.27s 21.43m 8% / 4% / 0%

Table 8 Experiment results of office world with randomly placed laser safe and unsafe obstacles.
Office world with randomly selected laser safe and unsafe obstacles

Approach Success
Rate

Completion
Time

Path
Length Failures (BC / AB / TO)

Turtlebot
Baseline DLP 72% 100.93s 51.03m 28% / 0% / 0%
PiPS DLP 92% 103.54s 48.70m 0% / 8% / 0%
Pioneer
Baseline DLP 66% 98.18s 64.25m 34% / 0% / 0%
PiPS DLP 96% 104.96s 61.21m 2% / 2% / 0%

Fig. 21 Visualizations of the navigation process of baseline DLP (left) and perception-space DLP
(right). The top row has visualizations in the 3D world space from an external reference frame. The
bottom rows has visualizations of the same information overlayed on the robot’s camera view.

reduce the problem of local minima for the Pioneer (see §7.3). It should also be noted
that the majority of failures are due to aborted navigation as opposed to collisions.
The PiPS method is successful at avoiding collisions. The abort outcomes reveal
failure modes of the hierarchical planner.

Real-Time Egocentric Navigation Using 3D Sensing 43

7.3 Review of Outcomes

Here, we look a little more closely at the two different hierarchical navigation imple-
mentations and also review the causes of failure. First, we review how the baseline
and PiPS navigation methods compare. The navigation information associated to the
two implementations is shown in Fig.21. The top row provides an overhead view
of the mobile robot during navigation past and around a wall, with the local seg-
ment of the global path also plotted. Due to the expansion of the occupancy grid by
the robot radius, the occupied regions are slightly thicker than the true occupancy.
The blue curve segments on the plots are from the sensor information (laser scan
or egocircle) and indicate the true locations of the obstacle surfaces. The depicted
occupancy grids communicate the information that the baseline DLP system would
have during planning, while the red and magenta points are sampled and scored
robot poses. The magenta poses correspond to trajectories with collisions, while the
red poses correspond to safe trajectories. The thick green curve is the chosen local
path to follow. It is the trajectory with the lowest weighted sum of obstacle cost, local
go-to-goal cost, and path cost. In the case of the PiPS approach, it was also deemed
to be collision free based on the egocylindrical model. The baseline DLP system is
depicted by the left column images, and the PiPS DLP system is depicted by the
right column images. For the PiPS approach, the visualization is augmented with
the egocylindrical image, which contains memory of historical depth information
to reduce the effect of the sensor’s limited field of view. The wall data points to
the left of the robot are colored red, indicating close proximity to the robot. The
other obstacles in front of, to the right of, and behind the robot are colored green
to blue, indicating larger distances from the robot. Also depicted is the egocircle
(colored blue) which shows that the navigation system has good knowledge of the
local surroundings for informing the path scoring component of the local planner.

Failure Cases

Next, we explore the failure cases for the PiPS DLP navigation method. The two
failure case types experienced were bumper collisions and aborts.

Bumper collisions occur much more frequently with the Pioneer than with the
Turtlebot. The main source of bumper collisions with the Pioneer is rotating in place
near an obstacle since unlike with the Turtlebot this can cause the Pioneer to go
from a noncolliding state to a colliding state. This happens most frequently if a laser
unsafe obstacle is directly on the global path. Such obstacles are represented in the
egocylindrical model but not in the egocircle. As a result, evaluation of the cost
functions prioritizes trajectories that stick close to the global path (see Fig.22a). The
trajectory accepted by collision checking will therefore be the one that gets the robot
as close to the obstacle as possible the obstacle. Similar behavior is exhibited by
the Turtlebot, but the Turtlebot is able to safely rotate in place to follow a replanned
global path while the Pioneer cannot (see Fig.22b). Even if the local planner correctly
concludes that it cannot safely turn, this may result in the execution of a recovery

44 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

(a) Total Costs (b) Too Close

Fig. 22 (a) Visualization of approximate total costs associated with trajectories ending at each point
on the grid (red=low, blue=high). A laser unsafe obstacle can be seen in front of the robot (colored
red). (b) Visualization of robot’s state a short time later; attempts to turn will result in collision.

behavior and still result in a collision. Incorporating collision checking information
into the egocircle should help to prevent the planner from taking the robot so close
to obstacles. Another option may be to permit the robot to drive backwards if it is
unable to go forwards or turn in place.

Fig. 23 Approximate total cost
values of a scenario with a local
minimum (red=low, blue=high).
Also visualized: local goal (tan
arrow), global path (brown
curve), egocircle (black points).

Local planning can also fail by getting stuck in a lo-
cal minimum. Figure 23 depicts a scenario where the
Turtlebot must pass between two obstacles in order to
follow the global path (brown). As shown by the color
coded total cost values (red=low, blue=high), there is
a local minimum on the near side of the obstacles
that prevents the robot from traveling into the gap.
Since the gap is sufficiently wide for the Turtlebot to
safely enter it, global replanning does not provide an
alternative path and navigation ultimately aborts. Tun-
ing cost function parameters is only a partial solution
since different situations may require different sets of
parameters to achieve the desired behavior [61]. In-
corporating concepts from gap-based approaches may
help to prevent problems related to local minima.

7.4 Implementation using Stereo Camera

We now explore the performance of PiPS DLP when using a stereo camera. As
mentioned in §5.4, the depth images required by the PiPS system can be produced by
stereo matching algorithms. For these experiments, a stereo camera is attached 20cm

Real-Time Egocentric Navigation Using 3D Sensing 45

(a) (b) (c)

(d) (e) (f)

Fig. 24 Visualization of stereo implementation. (a) shows a simulated world with textured ground
plane and Turtlebot; (d) shows the textured box and cylinder obstacles used in experiments; (b)
and (e) depict the pointclouds and depth image generated with the traditional block matching (BM)
method; (c) and (f) depict the pointclouds and depth image generated with the semi-global block
matching (SGBM) approach.

in front of the Kinect on the Turtlebot and at the same position as the Realsense on
the Pioneer. A stereo camera is simulated using gazebo_ros_multicamera Gazebo
plugin with 7cm baseline, 60◦ field of view, 640x480 resolution and 30Hz frame
rate.

The ROS stereo image processing package [115] generates disparity maps from
stereo image pairs. Depth images can be easily computed from these disparity
maps per Eq.20. Traditional block matching (BM) and semi-global block matching
(SGBM) are both implemented in the ROS package. Figure 24 shows the results
of these methods on a simulated scene after parameter tuning. The first column
(Fig.24a & 24d) depicts the simulated scene. In order to improve the performance
of stereo matching, texture has been added to the ground plane as well as to the
randomly placed obstacles used in the experiments. The middle column (Fig.24b
& 24e) shows the stereo matching results from BM for the scene in Fig.24a. The
right column (Fig.24c & 24f) displays the results from SGBM for the same scene.
BM and SGBM represent different trade-offs between speed and accuracy in stereo
processing. BM is significantly faster than SGBM (approximately 25ms vs 120ms on
the test machine), potentially enabling faster planning rates. However, the additional

46 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

Table 9 Results for sector world with laser safe obstacles using stereo implementation
Sector world with laser safe obstacles

Approach Success
Rate

Completion
Time

Path
Length Failures (BC / AB / TO)

Turtlebot
Baseline DLP 100% 41.90s 19.63m 0% / 0% / 0%
PiPS DLP 90% 44.85s 19.53m 0% / 10% / 0%
Pioneer
Baseline DLP 100% 44.04s 20.00m 0% / 0% / 0%
PiPS DLP 82% 46.49s 19.74m 4% / 14% / 0%

Table 10 Results for sector world with laser safe and randomly placed laser unsafe obstacles using
stereo implementation

Sector world with laser unsafe obstacles

Approach Success
Rate

Completion
Time

Path
Length Failures (BC / AB / TO)

Turtlebot
Baseline DLP 34% 41.90s 19.63m 66% / 0% / 0%
PiPS DLP 72% 51.58s 19.83m 6% / 22% / 0%
Pioneer
Baseline DLP 22% 443.45s 20.44m 76% / 2% / 0%
PiPS DLP 74% 56.69s 20.61m 8% / 18% / 0%

processing performed by SGBM results in smoother, higher quality depth estimates.
The difference is especially apparentwhen looking at each algorithm’s depth estimate
of the white cube in Fig.24a: BM was only able to estimate depth along the edges
of the cube and the number ‘1’ printed on it while SGBM was able to generate an
accurate estimate for most of the face of the cube. Since the local planning rate used
in the previous experiments was only 5Hz, the superior quality of SGBM’s depth
images outweighs its longer processing time.

Apart from the depth image (and consequently the virtual laser scan) being
derived from stereo matching rather than a depth camera, the stereo implementation
experiments are identical to the previous experiments. The experiment results are
shown in Tables 9-12. In all cases, the success rate of the stereo implementation
is equal or slightly lower than the success rate of the corresponding depth image
implementation. The stereo implementation is vulnerable to all of the failure cases
described in §7.3 in addition to stereo-related sources of failure (noise, occlusion,
featureless surfaces, etc.).

8 Conclusion

Modern hierarchical navigation methods mostly rely on laser scan sensor measure-
ments due to the computational cost of processing the depth or range imagery signals
generated from contemporary sensors. Approaches geared towards resolving this
problem rely on data structures that are efficient for low resolution imagery but do

Real-Time Egocentric Navigation Using 3D Sensing 47

Table 11 Results of campus world with randomly placed laser safe and unsafe obstacles using
stereo implementation

Campus world with randomly selected laser safe and unsafe obstacles

Approach Success
Rate

Completion
Time

Path
Length Failures (BC / AB / TO)

Turtlebot
Baseline DLP 64% 38.58s 18.43m 34% / 2% / 0%
PiPS DLP 84% 49.83s 20.67m 8% / 8% / 0%
Pioneer
Baseline DLP 46% 41.09s 19.50m 50% / 4% / 0%
PiPS DLP 86% 48.10s 20.88m 6% / 8% / 0%

Table 12 Results of office world with randomly placed laser safe and unsafe obstacles using stereo
implementation

Office world with randomly selected laser safe and unsafe obstacles

Approach Success
Rate

Completion
Time

Path
Length Failures (BC / AB / TO)

Turtlebot
Baseline DLP 72% 101.09s 60.50m 28% / 0% / 0%
PiPS DLP 88% 115.52s 48.38m 4% / 8% / 0%
Pioneer
Baseline DLP 66% 100.55s 75.94m 34% / 0% / 0%
PiPS DLP 90% 104.33s 70.63m 4% / 4% / 2%

not scale well for higher resolution imagery.Modifying the internal world representa-
tion of the local planner to a viewer-centric or perception-space world representation
avoids the cost of mapping the data to data structures with poor scaling and grants
linear scaling properties as a function of the image resolution. A local planning
pipeline for trajectory scoring and collision checking using perception space has the
potential to replace the existing laser scan inspired strategies while preserving real-
time operation. This chapter described a set of modifications employing perception
space for a classical hierarchical navigation system. When evaluated on a described
navigation benchmark, the perception space navigation system had comparable or
better performance to the original laser scan implementation. Deficiencies of the
system were found to be a result of the local planner scoring system rather than of
the perception space modifications. Analysis and improvement of the scoring func-
tions and the recovery behaviors should resolve the identified issues. Alternatively,
exploring perception-space implementations of other local planning strategies might
lead to improved performance. Future work aims to do so.

References

1. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun,
Principles of Robot Motion: Theory, algorithms, and Implementation. MIT Press, 2005.

2. S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
3. M. Ivanov, L. Lindner, O. Sergiyenko, J. C. Rodríguez-Quiñonez, W. Flores-Fuentes, and

M. Rivas-Lopez, Mobile Robot Path Planning Using Continuous Laser Scanning. IGI

48 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

Global, 2019, pp. 338–372.
4. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of

minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2,
pp. 100–107, July 1968.

5. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik,
vol. 1, no. 1, pp. 269–271, 1959. [Online]. Available: http://dx.doi.org/10.1007/BF01386390

6. A. T. Stentz, “Optimal and Efficient Path Planning for Partially-Known Environments,” in
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ’94),
vol. 4, May 1994, pp. 3310–3317.

7. S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown terrain,” IEEE
Transactions on Robotics, vol. 21, no. 3, pp. 354–363, June 2005.

8. M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Anytime search in
dynamic graphs,” Artificial Intelligence, vol. 172, no. 14, pp. 1613–1643, 2008. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S000437020800060X

9. F.M.García,M.Kapadia, andN. I. Badler, “Gpu-based dynamic search on adaptive resolution
grids,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), May
2014, pp. 1631–1638.

10. E. G. Tsardoulias, A. Iliakopoulou, A. Kargakos, and L. Petrou, “A Review of Global Path
Planning Methods for Occupancy Grid Maps Regardless of Obstacle Density,” Journal of
Intelligent & Robotic Systems, vol. 84, no. 1, pp. 829–858, Dec. 2016.

11. O. Takahashi and R. J. Schilling, “Motion planning in a plane using generalized Voronoi
diagrams,” IEEE Transactions on Robotics and Automation, vol. 5, no. 2, pp. 143–150, April
1989.

12. L. E. Kavraki, M. N. Kolountzakis, and J. . Latombe, “Analysis of probabilistic roadmaps for
path planning,” IEEE Transactions on Robotics and Automation, vol. 14, no. 1, pp. 166–171,
Feb 1998.

13. R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in Proceedings 2000 ICRA.
Millennium Conference. IEEE International Conference on Robotics and Automation. Sym-
posia Proceedings (Cat. No.00CH37065), vol. 1, April 2000, pp. 521–528 vol.1.

14. K. Belghith, F. Kabanza, L. Hartman, and R. Nkambou, “Anytime dynamic path-planning
with flexible probabilistic roadmaps,” in Proceedings 2006 IEEE International Conference
on Robotics and Automation, 2006. ICRA 2006., May 2006, pp. 2372–2377.

15. J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning and replanning in
dynamic environments,” in Proceedings 2006 IEEE International Conference on Robotics
and Automation, 2006. ICRA 2006., May 2006, pp. 2366–2371.

16. E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-Time Motion Planning for Agile Autonomous
Vehicles,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 1, pp. 116–129,
2015/05/29 2002. [Online]. Available: http://arc.aiaa.org/doi/abs/10.2514/2.4856

17. J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-query path
planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Confer-
ence on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2, April
2000, pp. 995–1001 vol.2.

18. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The
International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011. [Online].
Available: http://ijr.sagepub.com/content/30/7/846.abstract

19. Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P. How, “Motion planning for urban driving
using rrt,” in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sep. 2008, pp. 1681–1686.

20. D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in Proceedings 2006 IEEE
International Conference on Robotics and Automation, 2006. ICRA 2006., May 2006, pp.
1243–1248.

21. M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for Rapid Replanning in Dy-
namic Environments,” in Proceedings 2007 IEEE International Conference on Robotics and
Automation, April 2007, pp. 1603–1609.

Real-Time Egocentric Navigation Using 3D Sensing 49

22. J. Bruce and M. Veloso, “Real-time randomized path planning for robot navigation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, Sept 2002, pp.
2383–2388 vol.3.

23. M. Otte and E. Frazzoli, RRT X : Real-Time Motion Planning/Replanning for Environments
with Unpredictable Obstacles. Cham: Springer International Publishing, 2015, pp.
461–478. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-16595-0_27

24. M. Pivtoraiko and A. Kelly, “Kinodynamic motion planning with state lattice motion prim-
itives,” in Proceedings of the IEEE International Conference on Intelligent Robotic and
Systems, 2011.

25. K. Hauser, T. Bretl, K. Harada, and J.-C. Latombe, “Using motion primitives in probabilistic
sample-based planning for humanoid robots,” in Algorithmic Foundation of Robotics VII, ser.
Springer Tracts in Advanced Robotics, S. Akella, N. Amato, W. Huang, and B. Mishra, Eds.
Springer Berlin Heidelberg, 2008, vol. 47, pp. 507–522.

26. E. Frazzoli,M.Dahleh, andE. Feron, “Maneuver-basedmotion planning for nonlinear systems
with symmetries,” IEEE Transactions on Robotics, vol. 21, no. 6, pp. 1077–1091, 2005.

27. I. A.Ş., M. Moll, and L. Kavraki, “The open motion planning library,” IEEE Robotics &
Automation Magazine, vol. 19, pp. 72–82, December 2012, http://ompl.kavrakilab.org.

28. A. A. Paranjape, K. C. Meier, X. Shi, S. Chung, and S. Hutchinson, “Motion primitives and
3-d path planning for fast flight through a forest,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Nov 2013, pp. 2940–2947.

29. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Proceed-
ings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, March 1985,
pp. 500–505.

30. E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial potential functions,”
IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp. 501–518, 1992.

31. O. Arslan and D. Koditschek, “Exact robot navigation using power diagrams,” in IEEE
International Conference on Robotics and Automation, 2016, pp. 1–8.

32. N. P. Hyun, E. I. Verriest, and P. A. Vela, “Optimal obstacle avoidance trajectory generation
using the root locus principle,” in IEEE Conference on Decision and Control, 2015, pp.
626–631.

33. J. Sethian, Level Sets Methods and Fast Marching Methods. Cambridge University Press,
1999.

34. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Springer, 2003.
35. M. Kelly, “An introduction to trajectory optimization: How to do your own direct collocation,”

SIAM Review, vol. 59, no. 4, pp. 849–904, 2017.
36. I. M. Ross and M. Karpenko, “A review of pseudospectral optimal control: From theory to

flight,” Annual Reviews in Control, vol. 36, no. 2, pp. 182 – 197, 2012.
37. J. Andersson, J. Gillis, G. Horn, J. Rawlings, and M. Diehl, “CasADi: a software framework

for nonlinear optimization and optimal control,” Mathematical Programming Computation,
Jul 2018.

38. R. Deits and R. Tedrake, “Efficient mixed-integer planning for UAVs in cluttered environ-
ments,” in IEEE International Conference on Robotics and Automation, 2015, pp. 42–49.

39. N. Hyun, P. Vela, and E. Verriest, “A new framework for optimal path planning of rectangular
robots using a weighted lp norm,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp.
1460–1465, 2017.

40. M.Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-time Gaussian process
motion planning via probabilistic inference,” The International Journal of Robotics Research,
vol. 37, no. 11, pp. 1319–1340, 2018.

41. Q. Pham, “A general, fast, and robust implementation of the time-optimal path parameteriza-
tion algorithm,” IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1533–1540, 2014.

42. J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding locally
optimal, collision-free trajectories with sequential convex optimization.” in Robotics: science
and systems, vol. 9, no. 1. Citeseer, 2013, pp. 1–10.

43. J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile robots,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 19, no. 5, pp. 1179–1187, Sep 1989.

50 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

44. ——, “The vector field histogram-fast obstacle avoidance for mobile robots,” IEEE Transac-
tions on Robotics and Automation, vol. 7, no. 3, pp. 278–288, June 1991.

45. I. Ulrich and J. Borenstein, “Vfh/sup */: local obstacle avoidance with look-ahead verifica-
tion,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 3, April 2000,
pp. 2505–2511 vol.3.

46. K. Nepal, A. Fine, N. Imam, D. Pietrocola, N. Robertson, and D. J. Ahlgren, “Combining
a modified vector field histogram algorithm and real-time image processing for unknown
environment navigation,” in Intelligent Robots and Computer Vision XXVI: Algorithms and
Techniques, vol. 7252. International Society for Optics and Photonics, 2009, p. 72520G.

47. and, “Vph: a new laser radar based obstacle avoidance method for intelligent mobile robots,”
in Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788),
vol. 5, June 2004, pp. 4681–4685 Vol.5.

48. J. Gong, Y. Duan, Y.Man, and G. Xiong, “Vph+: An enhanced vector polar histogrammethod
for mobile robot obstacle avoidance,” in 2007 International Conference on Mechatronics and
Automation, Aug 2007, pp. 2784–2788.

49. J. Minguez and L. Montano, “Nearness diagram navigation (nd): a new real time collision
avoidance approach,” in Proceedings. 2000 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2000) (Cat. No.00CH37113), vol. 3, Oct 2000, pp. 2094–2100
vol.3.

50. ——, “Nearness diagram (nd) navigation: collision avoidance in troublesome scenarios,”
IEEE Transactions on Robotics and Automation, vol. 20, no. 1, pp. 45–59, Feb 2004.

51. J. W. Durham and F. Bullo, “Smooth nearness-diagram navigation,” in 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sep. 2008, pp. 690–695.

52. J. Minguez, L. Montano, T. Simeon, and R. Alami, “Global nearness diagram navigation
(gnd),” in Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automa-
tion (Cat. No.01CH37164), vol. 1, May 2001, pp. 33–39 vol.1.

53. M. Mujahad, D. Fischer, B. Mertsching, and H. Jaddu, “Closest Gap based (CG) reactive
obstacle avoidance Navigation for highly cluttered environments,” in 2010 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Oct 2010, pp. 1805–1812.

54. M. Mujahed, D. Fischer, and B. Mertsching, “Safe Gap based (SG) reactive navigation for
mobile robots,” in 2013 European Conference on Mobile Robots (ECMR), Sept 2013, pp.
325–330.

55. V. Sezer and M. Gokasan, “A novel obstacle avoidance algorithm: "Follow the Gap
Method",” Robotics and Autonomous Systems, vol. 60, no. 9, pp. 1123–1134, 2012. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0921889012000838

56. M. Mujahed and B. Mertsching, “The admissible gap (AG) method for reactive collision
avoidance,” in 2017 IEEE International Conference on Robotics and Automation (ICRA),
May 2017, pp. 1916–1921.

57. R. Bauer,W. Feiten, and G. Lawitzky, “Steer angle fields: An approach to robust manoeuvring
in cluttered, unknown environments,” Robotics and Autonomous Systems, vol. 12, no. 3, pp.
209 – 212, 1994.

58. W. Feiten, R. Bauer, and G. Lawitzky, “Robust obstacle avoidance in unknown and cramped
environments,” in Proceedings of the 1994 IEEE International Conference on Robotics and
Automation, May 1994, pp. 2412–2417 vol.3.

59. J. Buhmann, W. Burgard, A. Cremers, D. Fox, T. Hofmann, F. Schneider, J. Strikos, and
S. Thrun, “The Mobile Robot RHINO,” AI Magazine, vol. 16, no. 1, 1995.

60. D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,”
Robotics Automation Magazine, IEEE, vol. 4, no. 1, pp. 23–33, Mar 1997.

61. C. Stachniss and W. Burgard, “An integrated approach to goal-directed obstacle avoidance
under dynamic constraints for dynamic environments,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 1, 2002, pp. 508–513 vol.1.

62. O. Brock andO.Khatib, “High-speed navigation using the global dynamicwindow approach,”
in Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat.
No.99CH36288C), vol. 1, 1999, pp. 341–346 vol.1.

Real-Time Egocentric Navigation Using 3D Sensing 51

63. E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The Office Marathon:
Robust navigation in an indoor office environment,” in IEEE International Conference on
Robotics and Automation, 2010, pp. 300–307.

64. R. Simmons, “The curvature-velocity method for local obstacle avoidance,” in Proceedings of
IEEE International Conference on Robotics and Automation, vol. 4, Apr 1996, pp. 3375–3382
vol.4.

65. N. Y. Ko and R. Simmons, “The lane-curvature method for local obstacle avoidance,” in
Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems.
Innovations in Theory, Practice and Applications (Cat. No.98CH36190), vol. 3, Oct 1998,
pp. 1615–1621 vol.3.

66. S. Quinlan and O. Khatib, “Elastic bands: connecting path planning and control,” in [1993]
Proceedings IEEE International Conference on Robotics and Automation, May 1993, pp.
802–807 vol.2.

67. M. Khatib, “Sensor-based motion control for mobile robots,” LAAS-CNRS: Toulouse, France,
1996.

68. C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann, and T. Bertram, “Trajectory modification
considering dynamic constraints of autonomous robots,” in ROBOTIK 2012; 7th German
Conference on Robotics, May 2012, pp. 1–6.

69. C. Rösmann, F. Hoffmann, and T. Bertram, “Integrated online trajec-
tory planning and optimization in distinctive topologies,” Robotics and
Autonomous Systems, vol. 88, pp. 142–153, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889016300495

70. L. Lindner, O. Sergiyenko, M. Rivas-López, D. Hernández-Balbuena, W. Flores-Fuentes,
J. R.-Q. nonez, F. Murrieta-Rico, M. Ivanov, V. Tyrsa, and L. Básaca-Preciado, “Exact laser
beam positioning for measurement of vegetation vitality,” Industrial Robot: The International
Journal of Robotics Research and Application, vol. 44, no. 4, pp. 532–541, 2017.

71. O. Sergiyenko, M. Ivanov, V. Tyrsa, V. Kartashov, M. Rivas-López, D. Hernández-Balbuena,
W. Flores-Fuentes, J. R.-Q. nonez, J. Nieto-Hipólito, W. Hernandez, and A. Tchernykh,
“Data transferringmodel determination in robotic group,”Robotics and Autonomous Systems,
vol. 83, pp. 251 – 260, 2016.

72. M. Ivanov, O. Sergiyenko, V. Tyrsa, P. Mercorelli, V. Kartashov, W. Perdomo, S. Sheiko, and
M. Kolendovska, “Individual scans fusion in virtual knowledge base for navigation of mobile
robotic group with 3d tvs,” in IECON 2018-44th Annual Conference of the IEEE Industrial
Electronics Society, 10 2018, pp. 3187–3192.

73. D.Maier, A. Hornung, andM. Bennewitz, “Real-time navigation in 3d environments based on
depth camera data,” in 2012 12th IEEE-RAS International Conference on Humanoid Robots
(Humanoids 2012), Nov 2012, pp. 692–697.

74. D. Murray and C. Jennings, “Stereo vision based mapping and navigation for mobile robots,”
IEEE Int Conf Robotics Automation, vol. 2, pp. 1694 – 1699 vol.2, 05 1997.

75. J. Biswas and M. Veloso, “Depth camera based indoor mobile robot localization and naviga-
tion,” in 2012 IEEE International Conference on Robotics and Automation, May 2012, pp.
1697–1702.

76. A. J. Barry, P. R. Florence, and R. Tedrake, “High-speed autonomous obstacle avoidance
with pushbroom stereo,” Journal of Field Robotics, vol. 35, no. 1, pp. 52–68, 2017. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21741

77. K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: A
probabilistic, flexible, and compact 3D map representation for robotic systems,” in In Proc.
of the ICRA 2010 workshop, 2010.

78. K. Schmid, T. Tomic, F. Ruess, H. Hirschmuller, and M. Suppa, “Stereo vision based in-
door/outdoor navigation for flying robots,” IEEE International Conference on Intelligent
Robots and Systems, pp. 3955–3962, 2013.

79. B. T. Lopez and J. P. How, “Aggressive 3-D collision avoidance for high-speed navigation,”
in 2017 IEEE International Conference on Robotics and Automation (ICRA), May 2017, pp.
5759–5765.

52 Justin S. Smith, Shiyu Feng, Fanzhe Lyu, and Patricio A. Vela

80. L. Matthies, R. Brockers, Y. Kuwata, and S. Weiss, “Stereo vision-based obstacle avoidance
for micro air vehicles using disparity space,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), May 2014, pp. 3242–3249.

81. T. Cao, Z. Xiang, and J. Liu, “Perception in disparity: An efficient navigation framework for
autonomous vehicles with stereo cameras,” IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 5, pp. 2935–2948, Oct 2015.

82. L. Matthies, R. Brockers, Y. Kuwata, and S. Weiss, “Stereo vision-based obstacle avoidance
for micro air vehicles using disparity space,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), May 2014, pp. 3242–3249.

83. K. McGuire, G. de Croon, C. De Wagter, K. Tuyls, and H. Kappen, “Efficient optical flow
and stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket
drone,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1070–1076, April 2017.

84. S. Hrabar, G. S. Sukhatme, P. Corke, K. Usher, and J. Roberts, “Combined optic-flow
and stereo-based navigation of urban canyons for a uav,” in 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Aug 2005, pp. 3309–3316.

85. T. Cao, Z. Xiang, and J. Liu, “Perception in disparity: An efficient navigation framework for
autonomous vehicles with stereo cameras,” IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 5, pp. 2935–2948, Oct 2015.

86. M. W. Otte, S. G. Richardson, J. Mulligan, and G. Grudic, “Local path planning in image
space for autonomous robot navigation in unstructured environments,” in 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Oct 2007, pp. 2819–2826.

87. J. Cutting, P. Vishton, and P. Braren, “How we avoid collisions with stationary and moving
obstacles,” Psychological Review, vol. 102, no. 4, pp. 627–651, Oct 1995.

88. B. R. Fajen, “Guiding locomotion in complex, dynamic environments,” Frontiers in Behav-
ioral Neuroscience, vol. 7, JUL 19 2013.

89. G. Vallar, E. Lobel, G. Galati, A. Berthoz, L. Pizzamiglio, and D. Le Bihan, “A
fronto-parietal system for computing the egocentric spatial frame of reference in humans,”
Experimental Brain Research, vol. 124, no. 3, pp. 281–286, Jan 1999. [Online]. Available:
https://doi.org/10.1007/s002210050624

90. M. R. Dillon, A. S. Persichetti, E. S. Spelke, and D. D. Dilks, “Places in the brain: Bridging
layout and object geometry in scene-selective cortex,” Cerebral Cortex, vol. 28, no. 7, pp.
2365–2374, 2018.

91. D. D. Dilks, J. B. Julian, A.M. Paunov, andN. Kanwisher, “The occipital place area is causally
and selectively involved in scene perception,” Journal of Neuroscience, vol. 33, no. 4, pp.
1331–1336, 2013.

92. M. R. Greene and A. Oliva, “Recognition of natural scenes from global properties: Seeing
the forest without representing the trees,” Cognitive Psychology, vol. 58, no. 2, pp. 137 – 176,
2009.

93. M. Bonner and E. RA, “Coding of navigational affordances in the human visual system,”
Proceedings of the National Academy of Sciences, vol. 114, no. 18, pp. 4793–4798, 2017.

94. D. Marr, Vision: A Computational Investigation into the Human Representation and Process-
ing of Visual Information. MIT Press, 1982.

95. G. Galati, E. Lobel, G. Vallar, A. Berthoz, L. Pizzamiglio, and D. Le Bihan, “The neural
basis of egocentric and allocentric coding of space in humans: a functional magnetic
resonance study,” Experimental Brain Research, vol. 133, no. 2, pp. 156–164, Jul 2000.
[Online]. Available: https://doi.org/10.1007/s002210000375

96. R. F. Wang and E. S. Spelke, “Updating egocentric representations in human
navigation,” Cognition, vol. 77, no. 3, pp. 215–250, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0010027700001050

97. H. J. Spiers and E. A. Maguire, “A navigational guidance system in the
human brain,” Hippocampus, vol. 17, no. 8, pp. 618–626. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/hipo.20298

98. R. A. Epstein, “Parahippocampal and retrosplenial contributions to human spatial
navigation,” Trends in Cognitive Sciences, vol. 12, no. 10, pp. 388–396, 2008. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S136466130800199X

Real-Time Egocentric Navigation Using 3D Sensing 53

99. A. A. Wilber, B. J. Clark, T. C. Forster, M. Tatsuno, and B. L. McNaughton, “Interaction
of Egocentric and World-Centered Reference Frames in the Rat Posterior Parietal Cortex,”
Journal of Neuroscience, vol. 34, no. 16, pp. 5431–5446, 2014. [Online]. Available:
http://www.jneurosci.org/content/34/16/5431

100. J. Smith and P. Vela, “Planning in perception space,” in IEEE International Conference on
Robotics and Automation, 2017, pp. 6204–6209.

101. P. Felzenszwalb and D. Huttenlocher, “Distance transforms of sampled functions,” Theory of
Computing, vol. 8, no. 19, pp. 415–428, 2012.

102. R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE International
Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13 2011.

103. OctoMap, “Github - octomap/octomap_mapping,” Oct 2017. [Online]. Available:
https://github.com/OctoMap/octomap_mapping

104. J. Pan, S. Chitta, andD.Manocha, “FCL:A general purpose library for collision and proximity
queries,” in 2012 IEEE International Conference on Robotics and Automation, May 2012,
pp. 3859–3866.

105. A. F. L. M. R. Brockers, “Stereo vision-based obstacle avoidance for micro air vehicles using
an egocylindrical image space representation,” vol. 9836, 2016, pp. 9836–9836–7. [Online].
Available: http://dx.doi.org/10.1117/12.2224695

106. M. Asada, T. Tanaka, and K. Hosoda, “Adaptive binocular visual servoing for
independently moving target tracking,” Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), vol. 3, no. April 2016, pp. 2076–2081, 1999. [Online]. Available:
http://ieeexplore.ieee.org/document/846335/

107. D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation of Dense Two-Frame Stereo
Correspondence Algorithms,” International Journal of Computer Vision, vol. 47, no. 1, pp.
7–42, 2002. [Online]. Available: http://dx.doi.org/10.1023/A:1014573219977

108. H. Hirschmuller, “Accurate and efficient stereo processing by semi-global matching and
mutual information,” in 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), vol. 2, June 2005, pp. 807–814 vol. 2.

109. S. Jin, J. Cho, X. D. Pham, K. M. Lee, S. Park, M. Kim, and J. W. Jeon, “Fpga design
and implementation of a real-time stereo vision system,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 20, no. 1, pp. 15–26, Jan 2010.

110. Y. Li, C. Yang, W. Zhong, Z. Li, and S. Chen, “High throughput hardware architecture for
accurate semi-global matching,” in 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), Jan 2017, pp. 641–646.

111. D. Hernandez-Juarez, A. Chacón, A. Espinosa, D. Vázquez, J. C. Moure, and A. M. López,
“Embedded real-time stereo estimation via semi-global matching on the gpu,” Procedia
Computer Science, vol. 80, pp. 143–153, 2016.

112. C. Sprunk, J. Röwekämper, G. Parent, L. Spinello, G. D. Tipaldi, W. Burgard, and
M. Jalobeanu, “An experimental protocol for benchmarking robotic indoor navigation,” in
Experimental Robotics. Springer, 2016, pp. 487–504.

113. J. Smith, J. Hwang, and P. Vela, “Benchmark worlds for testing autonomous navigation
algorithms,” 2018, [Repository]. [Online]. Available: http://github.com/ivalab/NavBench

114. C. Rockey, “depthimage_to_laserscan,” 2014, [Repository]. [Online]. Available:
https://github.com/ros-perception/depthimage_to_laserscan

115. P. Mihelich, K. Konolige, and J. Leibs, “Github - ros-
perception/image_pipeline/stereo_image_proc.” [Online]. Available: https://github.com/ros-
perception/image_pipeline.git

