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Potential Gap: A Gap-Informed Reactive Policy for
Safe Hierarchical Navigation

Ruoyang Xu1,†, Shiyu Feng2,†, and Patricio A. Vela1

Abstract—This paper considers the integration of gap-based
local navigation methods with artificial potential field (APF)
methods to derive a local planning module, called potential gap,
for hierarchical navigation systems. Central to the construction
of the local planner is the use of sensory-derived local free-space
models that detect gaps and use them for the synthesis of the APF.
Trajectories derived from the APF are provably collision-free
for idealized robot models. The provable property is lost when
applied to more realistic models. A set of algorithm modifications
correct for these errors and enhance robustness to non-ideal
models, in particular a nonholonomic robot model. Integration
of the potential gap local planner into a hierarchical navigation
system provides the local goals and trajectories needed for
collision-free navigation through unknown environments. Monte
Carlo experiments in benchmark worlds confirm the asserted
safety and robustness properties.

Index Terms—Collision Avoidance, Vision-Based Navigation,
Reactive and Sensor-Based Planning

I. INTRODUCTION

POTENTIAL methods generate guaranteed safe reactive
policies for fully controlled point-mass agents going from

one point in space to another, under the assumption of known
collision space regions [1]. A non-trivial performance gap
emerges between idealized and actual models, the latter of
which occupy space, have dynamics, can be nonholonomic,
and have incomplete collision space measurements (from a
limited field of view) [2], [3] . A variety of other planning
schemes have been derived and refined to address the perfor-
mance gap [4], [5]. In the context of long-distance navigation,
no single strategy provides the best outcome. Hierarchical
strategies permit multiple approaches that operate at different
temporal and spatial scales [4], [6], [7]. More importantly,
they consider the role of visual sensors in providing up-to-
date information regarding navigable space that complements
existing and potentially stale free space maps. Unfortunately,
more research effort goes into the design of general-purpose,
single strategy planning schemes, rather than into closed-loop,
sensing-informed hierarchical navigation methods.
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The research deficit implies that there may be value in
further study of hierarchical methods and how classical nav-
igation approaches may by integrated into their architectures.
Doing so may also suggest how to best leverage general-
purpose planners within an equally general and modular
hierarchical navigation framework. It also provides an excel-
lent opportunity to reconsider how idealized approaches, or
those with theoretical support but limited applicability, might
provide safe local planners that operate on short temporal and
small spatial scales. For these smaller domains, the fragile
theoretical guarantees could translate more robustly to non-
ideal settings through targeted modifications.

The contributions, ordered based on local planner process-
ing per Figure 1, are: (1) A novel gap detection method that
prioritizes line-of-sight visibility properties for establishing
candidate local navigation routes (§II-A); (2) The explicit
construction of potential field inspired flow fields for local
trajectory synthesis, with provable collision avoidance in the
ideal case (§II-B); and (3) Modular extensions that correct
for non-ideal robot models, where each module addresses the
loss of theoretical support and reduces sensitivity to this loss
(§II-D). The local planner, called potential gap, inherits the
navigation guarantees of potential field methods for idealized
systems and demonstrates robustness to non-ideal robot mod-
els when the modular extensions are activated. Potential gap
provides a framework for improved success and safety within
a real-time, hierarchical navigation system.

A. Related Work and Research Context

Visual navigation has an extensive history bridging several
core areas of robotics from perception to planning to action.
This section narrowly reviews topics most related to the paper,
from hierarchical navigation to closed-loop control.

1) Hierarchical Navigation Systems: Navigation systems
for mobile vehicles must identify a solution to the high-
level task of goal attainment with realizable low-level system
control laws. In mobile robot navigation contexts, bipartite
hierarchical systems consist of a global planner that generates
paths with prior environment knowledge, and a local planner
that reacts to the local information obtained from the sensors
[4]. They leverage the advantages of different planners while
offsetting their limitations, and have long been used in robotics
as the hierarchical structure leads to higher fault tolerance
and increased robustness [8]–[11]. The global planner runs
at a lower rate and considers all known map information
to provide a global path from a given start pose to a goal
pose, can be any applicable planner [12]. In contrast, the



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2021

Laserscan

Goal

Egocircle

World Map Global Planner

Gap Generation
and Selection

Multi-Trajectory
Synthesis

Trajectory
Scoring

Trajectory
Controller

LOCAL PLANNER

HIERARCHICAL NAVIGATION SYSTEM

sensor info

Recent Best Trajectory

Replan

LEVEL

High

Mid

LowContributions

Fig. 1. Hierarchical Navigation System information flow with global planner
modules (gray boxes) and local planner modules (blue boxes).

local planner executes at a higher rate to produce kinodynam-
ically controllable commands for driving robots and avoiding
obstacles. There is flexibility to select the local planner so
long as it is structured to receive and assimilate sensory input
into its local collision-avoiding navigation decision structure
[13]–[16]. Its limited scale supports real-time, sensory-driven,
collision-avoiding navigation.

2) Reactive and Potential Field Methods: The artificial
potential field method and its variants are a family of planners
whose instances offer simple and fast computation for mobile
robot obstacle avoidance [1], [17]–[20]. While the potential
field is particularly attractive due to its elegance and simplicity,
there are substantial shortcomings inherent to this method such
as a lack of consideration for robot kinematics, dynamics,
as well as local minimum problems with regard to world
geometry [2], [5]. Significant efforts were made to alleviate
those problems [21], [22]. When implemented as reactive
planners, the family of APFs nevertheless directly map robot
state and sensor observation to available actions, offering
better computational performance than deliberative planners.
They share valuable traits with perception space methods,
such as minimal sensor processing and planning complexity
in the egocentric robot frame. Integrating reactive methods
and perception space methods leverages their fast compute
properties, and the limited deliberation associated with local
planning modules informed by a global planner.

3) Perception-Space and Gap Navigation Methods: Recent
work has explored the use of perception-space representations,
inspired from Marr’s 2.5D space, and argued in favor of mixed
representation hierarchical navigation strategies [4], [16]. In
particular, a local planner (limited to a short time and small
spatial scale) gains computational advantages by minimally
processing the sensor data and recasting local navigation as
an ego-centric decision process. Related work has established
similar benefits for stereo MAVs [23].

For ground vehicle navigation, the topology of the space
and how to interpret it from sensor data has emerged as
an important local navigation decision [16]. Gap-based pro-
cessing aimed at detecting passable free-space is compatible
with and improves the synthesis of local optimal paths. While
there is no widely agreed-upon representation–or processing
approach–for gaps, gap-based methods typically reduce 1D
laser scan measurements to a set of “gaps” comprised of

beginning and terminating points that represent collision-free
regions in the observable space [24]–[28]. A gap-based method
would then generate reactive motion commands towards a
selected gap, which gives favorable performance in reasonably
sparse and structured environments. However existing gap
representations either rely on the presence of free space to
infinity [24] or dense and accurate sensor measurements for
detecting discontinuities [25], leaving the representation prone
to potentially false collision free spaces and errors. Gap-
based methods operate semi-deliberatively; the construction
and selection of free space are intentional while execution is
reactive. There is an opportunity to connect perception space
methods with potential field methods through the affordance
of gaps to deliver safe planning.

The value of gap detection in terms of establishing navi-
gation affordances for local planning was established in [16].
The intent of this study is to explore more deeply the gap rep-
resentations associated with gap-based path planning and their
connection to safe navigation through local space. Based on
their use, gap-based methods will naturally connect the local
planning module to the potential field navigation strategies
reviewed above, in turn overcoming the latter’s fundamental
limitations for complex worlds.

4) Safety in Control: Control barrier functions (CBFs) are
a class of functions whose role is to serve as instantaneous,
point-wise constraints on the applied control to achieve for-
ward invariance with respect to a safe set, in our context
a collision-free set (or to achieve forward reachability then
invariance with respect to a target set) [29]. By converting
safety (reachability) constraints into linear-in-the-control con-
straint equations, CBFs simplify the certification of safety
(reachability) with a trade-off in short-horizon optimality.
Looking back at the history of CBFs, which derive from barrier
functions, there is a connection to soft-constraint optimal
control methods. Barriers were used to generate soft-constraint
modifications to the optimization landscape, and could be
used to generate a family of optimal control solutions from
a parametrically varied barrier specification, which often had
properties similar to or were potential fields. By sequentially
solving and warm-starting a series of soft-constraint problems
with increasing penalties, the intent was to converge to the
equivalent hard-constraint solution. In connecting potential
methods to hierarchical planning, we have the opportunity
to translate the collision-critical potentials to CBF-based
command reshaping operators for ensuring the safe execution
of local paths.

For an idealized robot model (full control, 1st order, point-
mass, etc.), the safe forward-invariant set from a CBF specifi-
cation aligns with the safe reachable set generated using HJB
methods [30]. This set is described by a barrier function level-
set. For non-ideal robots a gap emerges between the idealized
level-set defined by the barrier function and the safe set defined
by HJB reachability/CBF feasibility analysis. Both approaches
require offline analysis to characterize the gap to arrive at the
correct set. This paper takes a step towards the efficient, online
modification of idealized, sensor-derived safe sets and applied
controls for non-ideal robots.
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B. Hierarchical Planning for Navigation

As briefly noted in §I-A1 and depicted in Figure 1, a
hierarchical navigation system decomposes its task into two
parts with distinct temporal and spatial scales: a global planner
and a local planner. Given a goal point and an estimated
map, the global planner synthesizes a candidate path from the
current robot pose to the goal. The global path is passed to the
local planner, whose objective is to generate local goals and
local paths that lead the robot to the final goal. The reduced
temporal and spatial scale of the local planner permits real-
time operation in the face of novel information generated from
sensor measurements. These measurements are also passed to
the global planner to enrich the global map for generating valid
global paths. The objective of the local planner, as informed
by the global path, is to sequentially synthesize collision-free
trajectory segments whose concatenation terminates at the final
goal. The potential gap method described next will define the
operation of the local planner.

II. THE POTENTIAL GAP LOCAL NAVIGATION MODULE

This section describes the approach taken to identify gaps
for navigation purposes and how they are used to specify
potential-based local navigation vector fields. By design, the
vector fields have guaranteed collision-free passage through
the gap for idealized settings (first-order, point-mass, holo-
nomic travel, full vision). For non-idealized robot models, the
potential fields require modification to their construction and
use barrier functions for a run-time hedge against collisions.

A. Gap Analysis and Gap Detection

Existing gap detection methods consider limited set of
navigation and sensing scenarios, leading to correct but not
fully generalizable gap detections. Though Closet Gap seeks
to address these circumstances, the set of scenarios covered
is still limited [25]. Our conception of a gap is informed by
earlier work using gaps to define local navigation goals [16].
In considering the intent behind gap-based methods and their
utility for navigation, we propose a different conception of
gaps that leads to a new method for detection and analysis.

Viewing gaps from a perception space approach, it is more
natural to represent them in robot-centered polar coordinates.
This perspective leads to the categorization of gaps into
swept and radial gaps based on their dominant direction.
Conceptually, swept gaps involve curves with larger angular
sweeps, while radial gaps have larger distance variation and
little angular difference. The former “face” the robot and have
good line-of-sight visibility properties. Swept gaps provide
information both about passage to the gap, as well as through
the gap. Radial gaps are oriented “sideways” to the robot and
have bad line-of-sight visibility properties. They exhibit poor
properties regarding passage to the gap and/or through it, see
Figure 2(b) and Figure 3(a) mark A. The objective of a gap
detection strategy should be to provide the maximal quantity
of swept gaps to leverage their favorable properties.

ll
lrα

αg

(a) (b) (c) (d)
swept gap

radial gap

simplified gap

radial gap
to
swept gap

Fig. 2. (a,b) Visual of swept and radial gaps, (c) the radial gap conversion
process, and (d) gap angular geometry. Black dot denotes the robot.

1) Swept and Radial Gap Detection: We define a new gap
detection policy that simplifies gaps when they arise from
complex world structure. The policy avoids potentially false
information arising from measurement sparsity. Gap modeling
hinges on classifying them as swept or radial.

Suppose that a full (360◦) laser scan-like measurement L
is available to the robot. In the instance of a limited field of
view, measurement propagation using the egocircle [16] would
keep track of measured parts of the surrounding collision-
space. Let the range measurements L provide n readings with
a maximum range value dmax. Perform a first pass through L
looking for the following two outcomes:
1) Large interval: I = [i, i+ k] 3 L(j) = dmax,∀j ∈ I , and

d(ζi, ζi+k) > 2rins for ζj = (L(j), θ(j))T .
2) Instantaneous change in range: |L(i+ 1)− L(i)| > 2rins,
where θ(j) is the scan angle associated to index j, d(·, ·)
is the Euclidean distance, and rins is the inscribed radius of
robot. Segments triggering the above are gaps that populate
the gap set G. Each gap in G is then classified as swept or
radial, see Figure 2. Gaps picked based on the second test
are automatically radial gaps. The others are classified based
on the dominant direction. This direction is measured via the
angle α on the short side of the triangle formed by the robot
and the two sides of the gap in the laser scan, Figure 2(d). Let
ll = L(i), lr = L(i+ k), and lmin = min[ll, lr]. Then,

α = π − 2π
k

n
− sin−1 lmin√

l2l + l2r − 2lllr cos(2π k
n

) sin(2π k
n

)
. (1)

The threshold τα = 3π/4 differentiates radial from swept
gaps. Assign the gap type as left when lr > ll and right
otherwise. For each detected gap G ∈ G, record the angular
index and distance of its sides.

2) Gap Simplification: A second pass through G merges
radial gaps and replaces them with swept gaps. This pro-
cess is done by moving gaps into a stack and recording
the last continuously mergable radial gaps before reaching a
termination condition. The termination condition is defined by
threshold ca on the angular difference between the pending
gap and candidate terminating gap. A gap is mergable with a
candidate gap if there are no closer obstacle points in between
them. Mergability is determined by a threshold cd on the
acceptable range difference between the two gaps. Traversing
every gap once when added to the final set and once more
when determining the need for deletion, the time complexity
of gap simplification is linear, e.g., O(n).

3) Radial Gap Conversion: For holonomic point-mass
robots with full (360◦) scanning the SGP strategy is suf-
ficient for collision-free path planning. However, for robots
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Fig. 3. Comparison between closest gap (CG) [25] and swept gap prioritization (SGP). Dark dots represents laserscan results, red lines denote raw gaps for
SGP, and the teal lines denote returned gaps (CG and SGP). (a) Performing SGP collapses dangerous regions as A, B, and C. (a,b) Since SGP explicitly
reasons about swept gaps, it simplifies regions D and E while CG does not due to boundary geometry readings. (c) SGP is less sensitive to sensor noise and
provides a smaller, safer set of gaps as in region F, since regions behind swept gaps are collision free. (d) CG and SGP are comparable for G.

with partial scanning, non-circular shapes, or nonholonomic
constraints, radial gaps cause problems based on the limited
visual information available about what lies beyond the gap.
To remedy the problem, a radial gap conversion process may
be added to convert all remaining radial gaps into swept gaps
by rotating their gap representation about the nearest gap
point. The amount of rotation is controlled by the parameters
ε = (ε1, ε2). Radial gaps are rotated by η = atan(ε2/ε1)
so that the local goal, a temporary point just ε2 away on the
other side of the gap is line-of-sight visible. Figure 2(c) shows
a preserved radial gap converted to a swept gap.

4) Swept Gap Prioritization versus Closest Gap: We call
the above process Swept Gap Prioritization (SGP). Figure
3 visualizes some of the benefits of SGP over closest gap
(CG) [25], which attempts similar processing. The figures
show examples of gap detection where raw gaps are marked
bright red, and simplified gaps are marked teal. SGP collapses
compound situations (A, B, and C regions), reducing gaps to
the ones most relevant to the robot. The simplification reduces
uncertainty behind radial gaps and avoids dangerous com-
pound scenarios such as at the tip of region A and B. While
both approaches generate similar results in most scenarios,
SGP is computationally simpler. It leverages gap positioning
in polar space during the reduction of gap sets to give O(n)
runtime while CG is O(n2) due to checking nested gaps.
SGP is also more robust to situations where sensors readings
are uncertain. Figure 3(c) illustrates where sensor uncertainty
due to environment geometry causes discontinuities in range
readings. SGP simplifies the gaps and returns ones better
suited to motion planning.

B. Construction of Gradient Field with Circulation

The output of the SGP algorithm leads to a modified (and
usually reduced) gap set GSGP. For each G ∈ GSGP we establish
a gap local goal that is at least ε2 away from the gap, and
ε1 from the closest side of gap if the local goal lies outside
of the (visible) angular space of the gap. The generation
of a local navigation trajectory for the gap involves the

creation of attractive potentials whose gradients are augmented
with circulation terms [31]. Under normal circumstances the
addition of circulation would have sign ambiguity. Here, the
desired flow direction to the gap is known, and hence the
circulation sign, so that the constructed solution has guaranteed
passage through the gap.

1) Closing the Gap for Convexity: If the gap angular extent,
αg in Figure 2(d), is beyond τGA (usually 90 or 180◦), then
the gap angle is shrunk to give a new G′ ⊂ G whose
angular extent is τGA, thereby ensuring that the gap region
is a polar triangle convex in Euclidean space. Euclidean
convexity ensures that the gradient vectors from the potential
and circulation elements will have the necessary properties to
guarantee gap passage. Gap closure is biased to ensure that
the local gap goal lies within the outer gap region. The set
GSGP is remapped to consist of convex gaps only.

2) Potential and Circulation Fields: After convexification,
and possibly modification (see §II-D3), to an angular extent
equal to or less than τGA, the local goal on the other side of
the gap is line-of-sight visible from any point within the gap
region. Let the local goal point be x∗LG as determined from
the chosen gap G∗ ∈ GSGP. The attractive potential is

Φ(x) = d(x, x∗LG) + d(x,G∗), (2)

where the first distance is to the local goal point and the second
is to the gap curve (then vanishes on the other side of the gap).
These potentials attract the robot to the gap curve then through
to the local goal. Rather than use the gradient for the flow, we
will follow the normalized gradient.

The premise behind gaps is that there is an obstacle in the
world that must be avoided by staying within the gap region,
which is known to be collision-free. Rather than impose an
obstacle avoiding potential, which could create a fixed point
in the resulting vector field, a purely rotational vector field is
created

Θ(x) = Je− dθ(x,pl)/σ pl − x
||pl − x||

− Je− dθ(x,pr)/σ pr − x
||pr − x||

, (3)

where J = R(−π/2) is skew-symmetric, and dθ(·, ·) is the
angular distance. pl and pr are points of left and right side
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of gaps. The vector fields are two rotational fields anchored
at the left and right gap points. Figure 4 shows an example
circulation vector field.

3) Guaranteed Passage: Proving that passage through the
gap for the robot must happen involves showing that the
boundary of the gap navigation region points inwards along
the robot-to-gap-endpoint edges (or simply gap sides) and
that there is no fixed point interior to the region. The only
reasonable flow for any point in the region is to exit via the gap
curve, e.g., gap passage. Along the gap edges, the gradients
of (2) either point inwards or parallel to it, never out by virtue
of gap convexity and by definition of the gap region. Thus,
what must be shown is that the circulation components also
point inwards. On the gap edge, one circulation term has dθ
vanishing; the circulation is purely perpendicular and inward
pointing. Let this vector be e⊥. Let the other circulation term
contribute the vector fφ. It satisfies

(e⊥+ fφ) · e⊥ = (1− cos(π−φ)) ≥ 0, for some φ > 0, (4)

which means that Θ(·) restricted to gap edges is inward
pointing. The only outward flow can be on the gap curve.

A similar argument as above applies to show that the interior
gap region points have a non-trivial outward pointing flow.
Define eρ(x) to be the radially directed outward vector for a
point x ∈ G. The following properties hold:

eρ(x) ·Θ(x) ≥ 0, and eρ(x) · ∇̂Φ(x) > 0 (5)

by virtue of αg being 90◦ (see §II-D3 for the τGA = 180◦

case and how it gets further reduced to 90◦). The definition
of ∇̂ is that it computes the gradient in (2) then makes it
unit length when non-zero. The vector field interior to the
gap region always has positive outward pointing contributions,
so there can be no fixed points. Positivity implies that any
initial point in G will flow out through the gap curve, see
vector field in Figure 4. All planar trajectories starting in the
polar triangle defined by G and the robot (which includes the
robot location) and following the constructed vector field are
guaranteed to exit the gap region through the gap curve, to be
attracted to the local goal, and to be non-colliding. A formal
theorem statement of this result can be found at [32].

C. Trajectory Synthesis and Scoring

With the generated set of gaps from Section §II-A, perform
forward integration on every potential field from the current
robot position to create a set of trajectories X . Each trajectory
is scored through cumulative egocentric pose cost and the
terminating pose distance to the local navigation goal [4].
Let T denote a single trajectory discretized into poses p, p∗

denote the local navigation goal, pend denote the last pose
on the trajectory, and d(p,L) return the distance from p to
the nearest point in the egocircle L. Score tuning parameters
include: w1, w2, cobs, rmax. The trajectory score is:

J(T ) =
∑
p∈T

C(d(p,L)) + w1||pend − p∗|| , where

C(d) =

cobse
−w2(d−rins), d > rins

0, d > rmax

∞, otherwise

+ =

circulation attractor combined

Fig. 4. Gap gradient field construction. Red triangle is robot location, blue
circles are gap curve endpoints, and green circle is goal point.

At each planning iteration, the best trajectory from the set
X is selected and compared against the currently executing
trajectory, with an oscillation cost to limit path switching.

D. Safe Extensions for Non-Ideal Robots

The mathematics and algorithms employed to now pre-
sumed the use of an idealized robot model. Deviations from
this model require modifications to the base method. This
section describes the modifications required for (a) robots
with area/volume, (b) non-holonomic robots, and (c) other
deviations from the ideal.

1) Perception-Space Collision Checking: This module is an
automatic part of our perception-space navigation stack [4],
[16], [33]. It takes candidate local trajectories and synthesizes
simulated egocircle measurements at their future poses along
the trajectory that measure the far side of the robot. If any
range measurements in the simulated egocircle lie beyond the
current actual egocircle estimate, then the pose is in collision
and the trajectory is rejected as infeasible. The process repeats
until a collision-free path is found through a gap or all are
rejected. The former gets passed on for trajectory tracking
while the latter triggers a global replan.

2) Nonholonomic Vehicles: The control u ∈ se(2) is not
fully realizable due to vehicle motion constraints. However,
most nonholonomic vehicles (and certainly all standard mobile
robots) are linearly controllable along feasible trajectories. Let
the vehicle be controlled through forward speed and turn rate.
The control is converted to feasible movement via:

ξu = [ν, 0, ω]T , ν = u1, ω = λyu
2 + u3. (6)

where ξ, u ∈ se(2). The control is both realizable and guides
the robot towards the local gap goal.

3) Radial Extension of Gaps: Since nonholonomy impacts
the linear controllability of robot models, the paths generated
from the vector field in §II-B cannot be precisely followed,
but are asymptotically tracked by (6). The robot may actually
leave the gap region when attempting to do so (typically when
oriented away or orthogonal to the local goal). We address this
problem by expanding the gap region in the vicinity of the
robot while closing it further from the robot. This process is
called radial extension since the vertex at the robot is shifted
away from the gap curve along a radial line. Shifting the origin
permits the construction of a new gap region that puts the robot
inside of it. The robot may move for a non-zero distance and
remain inside.

The process first finds the largest circular region centered on
the robot known to be collision-free. Such a circle must exist
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original polar triangle and swept gap (red)

collision free circle (green)

new polar triangle and its swept gap (green)

new polar origin

Fig. 5. Radial extension. The original swept gap polar triangle is converted
to a new triangle with a shifted origin (backwards along the swept gap arc
bisector). The shift distance is the radius of the largest free-space disc.

if the robot is non-colliding. The new origin is mapped to the
intersection of the circle with the gap boundary bisector that
passes through the robot frame, see Figure 5. A new gap region
is established from this new origin and the radial vectors that
pass through the two intersecting points of the safe circle and
the gap region boundary lines. Simple geometric arguments
show that the angular extent of this new gap is half that of (or
smaller than) the original gap. Gaps extending out to τGA =
180 are transformed to gaps with a gap angle less than or
equal to 90◦, as preferred in §II-B.

4) The Safety Projection Operator: One final addition
aims to prevent collisions, when nonholonomic motion or the
discrete time implementation of continuous control laws lead
to collision. The addition applies the projection operator from
adaptive control to prevent entrance to a region (as opposed
to preventing exit). It has long been used to prevent parameter
drift and is an early example of a barrier-like function that per-
forms command reshaping with provable forward invariance
(for a convex set) [34], much like a CBF [29]. Let C be the
set of collision curves to the left and to the right of the gap
(in polar space) and d(·, C) the Euclidean distance function to
C. Define the potential function:

ψ(x) =

(
rmin

d(x, C)
− rmin

rnom

)
/

(
1− rmin

rnom

)
, (7)

where rmin < rnom and which is depicted in Figure 6. Far
enough away, the potential is negative. At rnom, ψ passes
through zero and at rmin it passes through unity. These prop-
erties are essential to the projection operator, which is defined
in (8). In adaptive control, the projection operator keeps
adaptive parameters from going unbounded by restricting the
parameters to a compact set. Here, by definition of ψ, the
opposite holds with the intent being to drive the state away
from the open, bounded set associated to ΩO = {x|ψ(x) > 1}.
When ψ evaluates to less than zero, no control modification
occurs. When greater than zero, but with the control vectored
away from the boundary, no control modification occurs. As
ψ → 1 under a violating law u, the control modification
increases until canceling out the component leading to the
safety violation. Under full control, the projection operator
for ψ prevents control dynamics that would enter the unsafe
set ΩO established by the obstacles, and satisfies the same
properties as a control barrier function.

III. EXPERIMENTS, OUTCOMES, AND DISCUSSION

This section covers the experiments and outcomes con-
ducted for potential gap and for the state-of-the-art method

TEB [15]. Monte Carlo rollouts are performed for navigation
tests in benchmark worlds, which are populated with random-
ized unknown obstacles and start/goal locations.

A. Benchmark Environments and Performance Criteria

The TEB and potential gap (PG) navigation planner are run
in four benchmarking worlds. Dense, Campus, and Office are
from [16]. The fourth, Sector world, is a single large room
intended to model indoor spaces with locally untraversable
regions such as chair legs and obstacles such as trash cans and
cabinets. The simulation environment is a slightly modified
version of the Simple Two Dimensional Robot Simulator
(STDR) [35]. A very short range 360◦ range finder acts as
a virtual bumper for collision detection. The platforms are
configurable with different angular fields of view (FoV) of the
laser sensor, starting from 60◦ to 360◦, for partial to full ob-
servability. Additionally, experiments are conducted in Gazebo
with Turtlebots (60◦ FoV) for navigation performance with
nonholonomic, 2nd order robot. Parameter and implementation
settings are found at [32]. Performance evaluation criteria are
the success and collision rates, where higher and lower are
better, respectively.

B. Experiments and Outcomes

The experiments cover a range of test cases, starting
with the idealized robot model under variable field of view
(FoV) settings. The idealized robot model has 1st order, fully
actuated control equations (i.e., holonomic) with a circular
body that operates like a point mass. The second experiment
changes the control equations to being nonholonomic. The
third experiment moves from STDR to Gazebo, where the
motion model is nonholonomic, 2nd order. Each setting is run
with 100 different seeds in all four worlds. STDR experiments
are run 25 at a time and Gazebo experiments 3 at a time on
an AMD Ryzen 7 3800X processor (single-thread passmark
of 2744; multi-thread score of 43,447).

1) Idealized Robot Model: Figure 7 gives the failure mode
vs FoV for PG and holonomic TEB implementations. Firstly,
for the full FoV case, PG achieves no collisions and a nearly
perfect success rate. A small quantity (1%) of runs resulted
in an abort, which means that the local and global planner
could not coordinate to find a feasible path to the goal. TEB
has collisions for all FoV cases. PG continues to match or
outperform TEB in collisions, aborts, and time outs in lower
FoV cases. PG also maintains a high success rate, much like
TEB preserves its moderate success rate. However, for 60◦ and
90◦ FoV, PG has more collisions, and matches TEB’s success
rate at the lowest FoV. Enabling radial extension (PG+) gives a
bit more navigation free-space around the robot to compensate
for the limited FoV. PG+ matches or outperforms TEB for all
cases except for 60◦, where the collision count remains higher
(but success rate is higher).

The results show that in the idealized setting, the PG
navigation system matches the theoretical expectations (high
success, no collision). TEB has moderate success and few
collisions. The lower FoV results involve collisions that arose
from a lack of FoV but can be corrected with the RE module.



XU et al.: POTENTIALGAP 7

rmin
rnom

d(x; C)

ψ

Fig. 6. Obstacle Potential
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(8)
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PG employs a greedy gradient descent approach to path
generation. In contrast, TEB employs a soft-constraint optimal
control formulation to establish the local navigation paths and
has higher computational cost. The high success rate of PG
and PG+ confirms that the notion of using gaps to serve
as navigation affordances is critical to achieving safe, goal
attaining navigation through an unknown environment.

2) Nonholonomic, 1st order: Figure 8 provides the out-
comes for bumper collisions (left) and success rate (right).
Each plot contains implementations of nonholonomic TEB,
baseline PG without projection operator (¬PO) and radial
extend (¬RE), the full nonholonomic (PO,RE), and mixed
activations. The baseline PG, which uses the idealized robot
solutions, has the worst performance in lower FoVs yet
higher success rate than TEB. TEB maintains a low collision
count. Of the two partially corrected PG implementations, the
projection operator performs best (PO,¬RE). Adding radial
extension improves it somewhat (for lower and higher FoV),
showing that both contribute to safe navigation. The low
collision performance of TEB is undermined by its moderate
success rate induced by aborts. PG+(PO,RE) method has
more consistent success rate as a function of FoV. Overall
PG+(PO,RE) has the best performance in terms of high
success rates and low collision rates across FoV.

Similar collision outcomes between PG+(PO,RE) and TEB
show that the modified method functions as intended and that
the greedily derived paths are similar to optimally derived
paths from a safety perspective. They are better than the
sampled and optimally derived paths of TEB from a task
completion perspective. Compared to the holonomic case in
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Fig. 10. Safety vs Passage test for 120◦ and 360◦ FoV in nonholonomic 1st
order case. Performance vs rmin.

Figure 7, both planners displayed an outcome less sensitive to
FoV. This is caused by the motion model limiting motion to
angles local to the camera optical axis.

3) Nonholonomic, 2nd order: Figure 9 displays the failure
rates for PG+(PO,RE) and nonholonomic TEB in the Gazebo
simulated Turtlebot (FoV = 60◦). The TEB collision rate
matches the 1st order case. The 2nd order nonholonomic PG
collision rate is similar to the 1st order case and significantly
better than TEB (∼6x). The success rate for PG drops from
96% to 93%, but is well above those of the 1st and 2nd order
TEB cases.

PG is relatively consistent when applied to the dynamic
case. Again, this is an important outcome based on the fact
that PG is based on APF methods that were designed for ide-
alized robot models. As a greedy path generation approach, it
outperforms the soft-constraint optimal control TEB solution.
Though TEB could explore a far richer trajectory-space for a
given local goal through probabilistic roadmaps (PRM), the
approximate PRM generated from sensor data produces paths
less representative of the local navigable space compared to
gap methods due. Consequently, the PRM does not exploit
navigable space as well as the potential gap method does.
The experiments indicate that PG typically explores 5x more
trajectory options than TEB. Furthermore, the soft constraint
approach cannot guarantee feasibility of the trajectories, which
may result in poor sequential decision making if some of the
solutions are immediately feasible but eventually infeasible.
By construction PG avoids these issues and creates protective
mechanisms to prevent collision while aiming to complete the
task.
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4) Nonholonomic, Safety vs Passage: In §III-B2, the mod-
ified PG method with full FoV did not achieve perfect nav-
igation as for the PG holonomic case in §III-B1. This is a
function of the lack of full control, the tuning of the projection
operator, and some non-determinism in the outcomes. There is
a trade-off between tuning for task completion versus safety.
Figure 10 shows the effect of varying the parameter rmin in
(7). For lower values there are less aborts or time outs, but
at the cost of increased collisions. For higher values there are
more time outs and some aborts, but no collisions. The results
hold for the two FoV cases tested, which represent the lowest
reasonably safe and available FoV for popular range-based
sensors, and the maximal FoV settings. Future work aims to
address the trade-off by exploring how to dynamically adjust
the parameter.

5) Timing: The median per trajectory compute time of
potential gap was less than 1ms, while TEB was just under
10ms, leading to an order of magnitude difference. The
average processing time per frame for PG was 8ms, half that
of TEB (∼17ms). Recall that, on average, PG evaluated 5x
more paths than TEB per invocation.

IV. CONCLUSION

Potential gap is a local planner, designed using ideas from
artificial potential field theory to create a spatially localized
gradient descent problem with guarantees on safe passage
under an idealized robot model with full sensing. Central
to the idea is the use of perception space to identify gaps
for constructing the local gradient flow. Deviations from this
model, such as field of view limitations and nonholonomic
motion models, require modifications of the baseline method to
recover lost safety and performance properties. Simulated sce-
narios demonstrate that the method achieves high completion
rates and matches the safety of an optimal trajectory synthesis
method but with faster runtime and higher completion rate.
The code is open-sourced [32].

The study is a first step towards provably safe, hierarchical
navigation with realistic robot models and configurations.
Additional investigation is needed to strengthen the safety
properties for the nonholonomic case. Lastly, more aggressive
maneuvering with strong momentum effects were not consid-
ered. Further study is needed to explore how the potential gap
method may operate under these conditions.
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