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Abstract—This article describes a stereo image-based
visual servoing (VS) system for trajectory tracking by a
nonholonomic robot without externally derived pose in-
formation nor a known visual map of the environment. It
is called trajectory servoing (TS). The critical component
is a feature-based, indirect simultaneous localization and
mapping (SLAM) method to provide a pool of available fea-
tures with estimated depth, so that they may be propagated
forward in time to generate image feature trajectories for
VS. Short and long distance experiments show the bene-
fits of TS for navigating unknown areas without absolute
positioning. Empirically, TS has better trajectory tracking
performance than pose-based feedback when both rely on
the same underlying SLAM system.

Index Terms—Computer vision, robot control, robotics.

I. INTRODUCTION

NAVIGATION systems with real-time needs often employ
hierarchical schemes that decompose navigation across

multiple spatial and temporal scales. Doing so, improves real-
time responsiveness to novel information gained from sensors,
while being guided by the more slowly evolving global path.
At the lowest level of the hierarchy lies trajectory tracking
to realize the planned paths or synthesized trajectories. In the
absence of an absolute reference (such as GPS) and of an
accurate map of the environment, only on-board mechanisms
can support trajectory-tracking. These include odometry through
proprioceptive sensors (wheel encoders, IMUs, etc.) or visual
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sensors. Pose estimation from proprioceptive sensors is not
observable, thus visual sensors provide the best mechanism to
anchor the robot’s pose estimate to external, static reference
locations. Indeed visual odometry (VO) or visual SLAM (V-
SLAM) solutions are essential in these circumstances. However,
VO/V-SLAM estimation error and pose drift degrade trajectory
tracking performance. Is it possible to do better?

The hypothesis explored in this article is that performing
trajectory tracking in the image domain reduces the trajectory
tracking error of systems reliant on VO or V-SLAM pose es-
timates for feedback. Trajectory tracking feedback shifts from
pose space to perception space. Perception space approaches
have several favorable properties when used for navigation [1],
[2]. Shifting the representation from being world-centric to being
viewer-centric reduces computational demands and improves
run-time properties. For trajectory tracking without reliable
absolute pose information, simplifying the feedback pathway
by skipping processes that degrade performance of—or are not
essential to—the local tracking task may have positive benefits.
Using image measurements to control motion relative to visual
landmarks is known as visual servoing (VS). Thus, the objective
is to explore the use of image-based VS for long distance
trajectory tracking with a stereo camera as the primary sensor
and without absolute positioning. The technique, which we call
trajectory servoing (TS), will be shown to improve trajectory
tracking over systems reliant on V-SLAM for pose-based feed-
back. In this article, a trajectory is a time parametrized curve in
Cartesian space.

A. Related Work

1) VS: VS has a rich history and a diverse set of strategies for
stabilizing a camera to a target pose described visually. VS al-
gorithms fit into one of two categories: image-based VS (IBVS)
and position-based VS (PBVS) [3], [4]. IBVS implementations
include both feature stabilization and feature trajectory track-
ing [4], [5]. IBVS emphasizes point-to-point reconfiguration
given a terminal image state [6]. It requires artificial markers
and co-visibility of image measurements during motion [7],
which may not be satisfied for long-distance displacements.
Furthermore, there is no guarantee on the path taken since the
feature space trajectory has a nonlinear relationship with the
Cartesian space trajectory. Identifying a feature path to track
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based on a target Cartesian space trajectory requires mapping
the target positions into the image frame over time to generate
the feature trajectory [5].

The target application is trajectory tracking for a mobile robot
with IBVS. Both holonomic [8] and nonholonomic [9]–[14]
mobile robots have been studied as candidates for VS. Most
approaches do not use the full IBVS equations involving the
image Jacobian. The centroid of the features [9], [13], the
most frequent horizontal displacement of the matched feature
pairs [10] or other qualitative cost functions [8] are used to
generate [9] or correct [10] the feedforward angular velocity of
mobile robot. These simplifications work well in circumstances
tolerant to high tracking inaccuracy (e.g., an outdoor, open field
navigation). In this article, we use more precise velocity relations
between the robot and feature motion to generate a feedback
control signal for exact tracking similar to [11]. That work
studied the path following problem with a visible path marker
line, which does not hold here.

2) Visual Teach and Repeat: Evidence that visual features
can support trajectory tracking or consistent navigation through
space lies in the Visual Teach and Repeat (VTR) navigation
problem in robotics [9], [10]. Given data or recordings of prior
paths through an environment, robots can reliably retrace past
trajectories. The teaching phase of VTR creates a visual map
that contains features associated with robot poses obtained from
visual odometry [9], [15]–[18]. Extensions include real-time
construction of the VTR data structure during the teaching
process, and the maintenance and updating of the VTR data
during repeat runs [15], [16]. Feature descriptor improvements
make the feature matching more robust to the environment
changes [18], [19]. Visual data in the form of feature points can
have task relevant and irrelevant features, which provide VTR
algorithms an opportunity to select a subset that best contributes
to the localization or path following task [15], [17]. It is difficult
to construct or update a visual map in real-time while in motion
due to the separation of the teach and repeat phases. In addition,
VTR focuses more on local map consistency and does not work
toward global pose estimation [17] compared with SLAM since
the navigation problems it solves are usually defined in the local
frame.

Another type of VTR uses the optical flow [10], [20] or feature
sequences [21]–[23] along the trajectory, which is then encoded
into a VTR data structure and control algorithm in the teaching
phase. Although similar to VS, the system is largely overdeter-
mined. It can tolerate feature tracking failure, compared with
traditional visual servo system, but may lead to discontinu-
ities [24]. Though this method handles long trajectories, and
may be supplemented from new teach recordings, it can only
track paths through visited space.

3) Navigation Using Visual SLAM: Visual simultaneous lo-
calization and mapping (V-SLAM) systems estimate the robot’s
trajectory and world structure as the robot moves through
space [25]. SLAM derived pose estimation naturally supports
navigation or path following [26], [27], and PBVS [28], [29].
Most of these methods still need to initialize and maintain
topological or metric visual maps for path planning [26], [27]
or for localizing the robot for PBVS [28], [29]. These works do

not involve Cartesian trajectories [26], [28], [29] nor provide
solutions to occlusion and tracking loss problems [26]–[29].
The shortcomings imply the inability to track long Cartesian
trajectories through unknown environments.

Pose estimation accuracy of SLAM is a major area of
study [30]–[34]. However, most studies only test under open-
loop conditions [30]–[32], [34], i.e., they analyze the pose
estimation difference with the ground truth trajectory and do
not consider the error induced when the estimated pose in-
forms feedback control. More recently, closed-loop evaluation
of V-SLAM algorithms as part of trajectory tracking feedback
control or navigation were tested for individual SLAM sys-
tems [35]–[37] or across different systems [38]. The studies
exposed the influence of V-SLAM estimation drift and latency
on pose-based feedback control performance. This article builds
upon an existing closed-loop benchmarking framework [38] and
shows improved tracking performance by TS.

B. Contribution

Both IBVS and VTR depend on reliably tracked, known
features within the field-of-view, which can only be achieved
by artificial, task-oriented scenarios [5], [11] or a prebuilt tra-
jectory map [9], [15]–[18]. This limitation does not permit travel
through unknown environments to an unseen terminal state,
and motivates the use of feature-based V-SLAM systems with
online map saving [26], [27]. Compared with PBVS based on
SLAM [28], [29], TS uses IBVS to less frequently query the
pose from a stereo V-SLAM system [30], thereby attenuating
the impact of estimation drift and error on trajectory tracking
performance.

TS bypasses the explicit use of VO/V-SLAM pose, whose
estimates are vulnerable to image-driven uncertainty, which
manifests as pose error or drift [3], [4], by relying on the
V-SLAM feature maintenance components that provide accurate
and robust feature tracking and mapping. We present evidence
for the assertion that the coupling between V-SLAM and IBVS
combines their advantages to provide more effective feedback
signals relative to V-SLAM pose-based control. Simulation and
real experiment performance benchmarking show that TS im-
proves trajectory tracking performance over pose-based feed-
back using SLAM estimates, thereby mitigating the effect of
pose estimation error or drift, even though the same visual
information is used for closing the loop. The beneficial coupling
is the motivation behind the TS system design. It is a promising
approach to trajectory tracking through unknown environments
in the absence of absolute positioning signals.

C. Image-Based VS Rate Equations

The core algorithm builds on IBVS [39]. This section covers
IBVS with an emphasis on how it relates the velocity of image
features to the robot velocities via the image Jacobian [3], [4].
These equations will inform the trajectory tracking problem
under nonholonomic robot motion. We use the more modern
notation from geometric mechanics [40] since it provides equa-
tions that better connect to contemporary geometric control and
to SLAM formulations for moving rigid bodies.
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1) Nonholonomic Robot and Camera Kinematic Models: Let
the motion model of the robot be a kinematic Hilare robot model,
where the pose state gWR ∈ SE(2) evolves under the control
u = [ν, ω]T as

ġWR = gWR ·
⎡⎣ 1 0

0 0
0 1

⎤⎦[
ν
ω

]
= gWR · ξu (1)

for ν a forward linear velocity and ω an angular velocity, and
ξu ∈ se(2). The state is the robot frame R relative to the world
frame W . The camera frame C is presumed to be described as
hR
C relative to the robot frame. Consequently, camera kinematics

relative to the world frame are

ḣW
C = gWR · hR

C · Ad−1
hR
C
·
⎡⎣ 1 0

0 0
0 1

⎤⎦[
ν
ω

]
= gWR · hR

C · ζu (2)

with ζu ∈ se(2). Now, let the camera projection equations be
given by the function H : R3 → R2 such that a point qW

projects to the camera point r = H ◦ hC
W(qW). Under camera

motion, the differential equation relating the projected point to
the camera velocity for a static point qW is

ṙ = DH(qC) · (ζu · qC) , for qC = hC
WqW (3)

where D is the differential operator. Since the operation ζ · q is
linear for ζ ∈ se(2), q ∈ R3, it can be written as a matrix–vector
product M(q)ζ leading to

ṙ = DH(qC) ·M(qC)ζu = L(qC)ζu (4)

where L : R3 × se(2) is the Image Jacobian. Given the point
and projection pair (q, r) ∈ R3 × R2, L works out to be

L(q) = L(q, r) =

[
− f

q3 0 r2

0 − f
q3 −r1

]
(5)

where f is the focal length. Recall that r = H(q). Re-expressing
L as a function of (q, r) simplifies its written form, and exposes
what information is available from the image directly r ∈ R2

and what additional information must be known to compute
it: coordinate q3 from qC ∈ R3 in the camera frame, which
is also called depth. With a stereo camera, the depth value
is triangulated. The next section will use these equations for
trajectory tracking with image features.

II. TRAJECTORY SERVOING

A. System Overview

The algorithmic components and information flow of a TS
system are depicted in Fig. 1, and consist of two major com-
ponents. The first one, described in Section II, is a TS system
for a set of world points and specified trajectories. These points
are obtained from the V-SLAM system as well as tracked over
time. It is capable of guiding a mobile robot along short paths.
The second component, described in Section III, supervises the
core TS system to confirm that it has sufficient features from
the feature pool to operate. Should this quantity dip too low, the
supervisor queries the V-SLAM module for additional features
and the robot pose to build new feature tracks.

Fig. 1. TS system has two major components. One (red) steers the
robot to track short paths, while the other (blue) ensures the sufficiency
of features to use by querying a V-SLAM module. The entire system
is used when tracking long distance trajectories. Solid arrows indicate
high frequency data passing, and dashed arrows low frequency. All blue
arrows represent the information flow related to long distance addition.

Fig. 2. TS process uses matches from S∗ to S to define the control u,
where S∗(t) is computed from the desired trajectory gW,∗

R (t).

B. Trajectory Servoing

This section describes the basic TS implementation. Tradi-
tional controllers are designed in Cartesian space where V-
SLAM is a pose observer (also called visual odometry). For short
distance navigation, where sufficient image features remain
within the field-of-view (FoV) over the trajectory, we shift the
problem to image space and solve using IBVS by synthesizing
a desired feature trajectory that defines what the camera should
see over time from an initial view.

The standard IBVS equations presented in Section I-C typ-
ically apply to tracked features with known static positions in
the world (relative to some frame attached to these positions).
As described in Sections I-A1 and I-A2, a visual map or visible
targets are usually necessary. The prerequisites needed for stable
tracking and depth recovery of features are major challenges
regarding the use of VS in unknown environments. Fortunately,
they are all realizable based on information and modules avail-
able within mobile robot autonomy stacks.

TS requirements condense down to the following: 1) A set
of image points, S∗(t0), with known (relative) positions; 2)
A given trajectory and control signal for the robot starting at
the robot’s current pose or nearby, gWR (t0); and 3) The ability
to index and associate the image points across future image
measurements, S∗(t) ↔ S(t), when tracking the trajectory. In
other words, it requires a mechanism to temporally associate
measured features along the entire trajectory. The TS process
and variables are depicted in Fig. 2. The autonomy modules
contributing this information are the navigation and V-SLAM
stacks. The navigation stack generates a trajectory to follow. An
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indirect, feature-based V-SLAM stack keeps track of points in
the local environment, links them to previously observed visual
features, and estimates their actual positions relative to the robot.

1) Trajectory and Control Signals: Define S = { ri }nF
1 ⊂

R2 as a set of image points in the current camera image, sourced
from the set Q = { qWi }nF

1 ⊂ R3 of points in the world frame.
Suppose that the robot should attain a future pose given by g∗,
for which the points in Q will project to the image coordinates
S∗ = H ◦ (g∗hR

C )
−1(Q). For simplicity, ignore field of view

issues and occlusions between points. Their effect would be such
that only a subset of the points in Q would contribute to VS.

Assume that a specific short-duration path has been estab-
lished as the one to follow, and has been converted into a path
relative to the robot’s local frame. It either contains the current
robot pose in it, or has a nearby pose. Contemporary navigation
stacks have a means to synthesize both a time-varying trajectory
and an associated control signal from the paths. Here, we apply
a standard trajectory tracking controller [41] to generate ξ∗u(t)
and gW,∗

R (t) by forward simulating (1); note that ξ∗u contains
the linear velocity ν∗ and angular velocity ω∗. Some navigation
stacks use optimal control synthesis to build the trajectory. Either
way, the generated trajectory is achievable by the robot.

In the time-varying trajectory tracking case, we assume that
a trajectory reference hW

C (t) exists along with a control signal
u∗(t) satisfying (2). It would typically be derived from a robot
trajectory reference gWR (t) and control signal u∗(t) satisfying
(1). Using those time-varying functions, the equations in (2)
are solved to obtain the image coordinate trajectories. Written
in short-hand to expose only the main variables, the forward
integrated feature trajectory S∗ is

Ṡ∗ = L ◦ hC
W(t)(QW) · ζu∗(t), with

S∗(0) = H ◦ hC
W(0)(QW).

(6)

It will lead to a realizable VS problem, where ν∗, ω∗, and
S∗(t) are consistent with each other. The equations will require
converting the reference robot trajectory to a camera trajectory
hW,∗
C (t) using Ad−1

hR
C

.

2) Features and Feature Paths: The V-SLAM module pro-
vides a pool of visible features with known relative position for
the current stereo frame, plus a means to assess future visibility
if desired. Taking this pool to define the feature set S∗(0) gives
the final piece of information needed to forward integrate (6) and
generate feature trajectories S∗(t) in the left camera frame. This
process acts like a short-term teach and repeat feature trajectory
planner but is simulate and repeat, for on-the-fly generation of
the repeat data.

A less involved module could be used besides a fully real-
ized V-SLAM system, however, doing so would require cre-
ating many of the fundamental building blocks of an indirect,
feature-based V-SLAM system. Given the availability of strong
performing open-source, real-time V-SLAM methods, there is
little need to create a custom module. In addition, an extra
benefit to tracked features through V-SLAM system is that a
feature map is maintained to retrieve same reappeared features.
As will be shown, this significantly improves the average lifetime

of features, especially compared to a simple frame by frame
tracking system without the feature map.

After the V-SLAM feature tracking process, we are already
working with this feasible set whereby the indexed elements in
S correspond exactly to their counterpart in S∗ with the same
index, i.e., the sets are in correspondence.

3) TS Control: Define the error to beE = S − S∗, where el-
ements with matched indices are subtracted. The error dynamics
of the points are

Ė = Ṡ − Ṡ∗ = Lu(h
C
W(Q),S;hR

C ) · u− Ṡ∗ (7)

where we apply the same argument adjustment as in (5), so
that dependence is on image features then point coordinates as
needed. Further, functions or operations applied to indexed sets
will return an indexed set whose elements correspond to the
input elements from the input indexed set. Since the desired
image coordinates S∗ are not with respect to a static goal pose
but a dynamic feature trajectory, Ṡ∗ �= 0, see (6). Define e, s,
s∗, q and L to be the vectorized versions of E, S, S∗, Q and
L. Then

ė = L(hC
W(q), s;hR

C ) · u− ṡ∗ (8)

is an overdetermined set of equations for u when nF ≥ 2. L =
[L1,L2] ∈ R2nF×2. Removing the functional dependence and
breaking apart the different control contributions, the objective
is to satisfy,

ė = L · u− ṡ∗ = L1ν +L2ω − ṡ∗ = −λe. (9)

A least-squares solution establishes the angular rate feedback

ω =
(
L2

)† (−L1ν − λe+ ṡ∗
)

(10)

so that

ė = −λe+Δe (11)

where Δe is mismatch between the true solution and the com-
puted pseudoinverse solution. If the overdetermined linear sys-
tem equalities (9) are compatible and have a unique solution (10),
then Δe will vanish and the robot will achieve the target pose.
If Δe does not vanish, then there will be an error (usually some
fixed point ess �= 0). For mobile robots, it is common to use
the linear velocities from ν∗(t) of the given trajectory [9], [10]
for angular control (10). The decoupling provides robustness to
the motion imperceptibility problem that can affect translational
motion control [4], [42].

The vectorized form of (6) for S∗(t) is

ṡ∗ = L1(qC∗
(t), s∗(t))ν∗(t) +L2(qC∗

(t), s∗(t))ω∗(t). (12)

Continuing, the vectorized steering (10) leads to

ω =
(
L2(qC , s)

)†(
L1(qC∗

(t), s∗(t))ν∗(t)−L1(qC , s)ν

+L2(qC∗
(t), s∗(t))ω∗(t)− λe

)
. (13)

They consist of feedforward terms derived from the desired
trajectory and feedback terms to drive the error to zero. The
feedforward terms should cancel out the Ṡ∗ term in (7), or
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Fig. 3. Gazebo environment top view and robot view with SLAM fea-
tures.

Fig. 4. Short distance template trajectories.

equivalently the now nonvanishing ṡ∗ term in (8). When trav-
eling along the feature trajectory S∗(t), the angular velocity
ω is computed from (13), where starred terms are known, and
ν = ν∗(t) from discussion after (10). As far as we know, no
general IBVS tracking equations have been derived that combine
feedforward and feedback signals.

C. Simulation Experiments and Results

This section runs several short distance TS experiments to
evaluate the accuracy of the image-based feedback strategy
supplemented by stereo V-SLAM. The hypothesis is that short
distance trajectory tracking in image space will improve over
tracking in pose space.

1) Experimental Setup: For quantifiable and reproducible
outcomes, the ROS/Gazebo SLAM evaluation environment
from [38] is used for the tests, on an Intel i7-8700 workstation.
Fig. 3 shows a top–down view of the world plus a robot view. The
simulated robot is a Turtlebot. It is tasked to follow a given short
distance trajectory, whose desired linear velocity is 0.3 m/s and
which is generated to be dynamically feasible [41]. A total of five
paths were designed, loosely based on Dubins paths. They are
denoted as short: straight (SS), weak turn (SWT), straight+turn
(SST), turn+straight (STS), turn+turn (STT), and are depicted
in Fig. 4. The average trajectory lengths are ∼4 m. Longer paths
would consist of multiple short segment reflecting variations on
this path set. They are designed to ensure that sufficient feature
points, visible in the first frame, remain visible along the entirety
of the path. Five trials per trajectory are run. The desired and
actual robot poses are recorded for performance scoring.

Two metrics quantify tracking performance: 1) Average lat-
eral error (ALE) is the two-norm of the perpendicular distance
to the robot heading direction averaged over time. It measures
robot deviation from the desired trajectory and has been used
to evaluate steering controllers [43]; 2) Terminal error (TE)
measures the robot’s distance to the final stopped position of the
desired trajectory after tracking ends. Implementation details are
provided in the public Github repository [44].

Fig. 5. Real experiment top view and robot view with SLAM features.
Blue box is the robot’s start pose. Red box shows the end poses region
of short trajectories. The green curve is a sample trajectory to track.

Fig. 6. 95% confidence intervals for short distance outcomes.

2) SLAM Stack: Part of the robot’s software stack includes
the Good Feature (GF) ORB-SLAM system [30] for estimating
camera poses. It is configured to work with a stereo camera
and integrated into a loosely coupled, visual-inertial (VI) sys-
tem [38], [45] based on a multirate filter to form a VI-SLAM
system. The TS system will interface with the GF-ORB-SLAM
system to have access to tracked features for servoing.

3) Methods Tested: The baseline performance standard is
pose-based control using perfect odometry (PO) as obtained
from the actual robot pose in the Gazebo simulator. PO is
used for performance comparison of the tested methods. Two
comparison methods are implemented. The first replaces PO
with the V-SLAM estimated pose (SLAM). The second is an
implementation of IBVS based on (13), which is effectively TS
without the V-SLAM system. It is called VS+ to differentiate
from TS, and uses a frame-by-frame stereo feature tracking sys-
tem [46]. Pose-based trajectory tracking [38] uses a geometric
controller with feedforward [ν∗, ω∗]T and feedback signals

νcmd = ν∗

wcmd = kθ ∗ θ̃ + ky ∗ ỹ + ω∗.
(14)

where feedback uses only ỹ and θ̃ from the pose error

[x̃, ỹ, θ̃]T � g̃ = g−1g∗ =
(
gWR

)−1
(t)

(
gW,∗
R

)
(t). (15)

For experimental consistency with TS, the pose-based control
directly uses feedforward linear velocity terms from the given
trajectory and only regulates heading. The controller gains were
empirically tuned to give good performance for the PO case and
extensively used in prior work [1], [2], [38]. The TS gains were
also tuned [44].

4) Results and Analysis: Table I(a,b) quantify the outcomes
of all methods tested. Fig. 6 consists of 95% confidence inter-
vals of ALE and TE for the different template trajectories and
methods (minus VS+) in simulations and real experiments. The
first outcome to note is that VS+ fails for all paths. The average
length of successful servoing is 0.4 m (∼10% of the path length).
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TABLE I
SHORT DISTANCE TRAJECTORY BENCHMARK AND REAL EXPERIMENT RESULTS

Bold numbers are the average results of TS to highlight the lower gap than SLAM.

Inconsistent data association rapidly degrades the feature pool
and prevents consistent use of features for servoing feedback.
Without the feature map in V-SLAM, redetected features are
treated as new and assigned unique indices, which violates the
correspondence rule from Section II-B2; as noted, any effort
to improve this would increasingly approach the computations
found in V-SLAM. Maintaining stable feature tracking through
V-SLAM is critical to TS.

Using PO as the standard, the tables show a smaller gap for
TS than for SLAM as seen by the lower metric scores. For ALE,
TS experiences a 35.2% degradation versus PO, while SLAM
experiences an 88% degradation. The ALE statistics in Fig. 6
indicate that TS is expected to outperform SLAM. Comparing
PO to TS and to SLAM, the p-values are 8e-4 and 1e-5. For TS
to SLAM they are 1.9e-4. All indicate statistically significant
performance differences. For TE, similar results hold except
that there is overlap in the PO and TS confidence intervals.
Consequently the p-value comparing PO and TS is 0.18, which
is not significant. Thus, TS performs close to PO with regards to
achieved terminal error, while SLAM does not (p-value: 2e-3).

TS uses the same control effort as pose-based control; the
angular control efforts of the methods were not significantly
different [44]. However, the rate of change of the control does
differ. The time differentiated control signal norm is an indicator
of control smoothness (larger means less smooth). They are
0.174, 0.174, and 1.300 for PO, SLAM, and TS, respectively. TS
control is computed directly from the tracked features without
temporal regularization applied to the applied controls. The
SLAM estimation process smooths the orientation estimates,
which translates to the control signal.

The first overall finding here is that TS outperforms SLAM
and VS+, though it is based on both. This confirms that TS
combines the advantages of them to enhance performance over
both. Second, implementing a purely image-based approach to
trajectory tracking through unknown environments is not only
possible, but can work better than SLAM pose-based controls
over short segments, in the absence of global positioning in-
formation. The results validate the system design proposed at
the beginning of Section II-B. The robust feature tracking of
V-SLAM prevents the loss of trajectory tracking stability seen
in VS+. The V-SLAM feature map maintenance, feature culling,
and feature retrieval modules contribute to robust VS.

D. Real Experiments and Results

To confirm that TS outcomes translate to practice, the short
trajectory experiment is run on a LoCoBot equipped with a

RealSense stereo camera and an Intel NUC (i5-7260 U). Fig. 5
presents a top-view of the experimental environment (left) and
a robot view with SLAM features (right). Based on the envi-
ronment and how long features can be tracked within it, the
template trajectories are scaled down to ∼2.4 m. For pose-based
control, two sources of robot pose estimates are tested: robot
odometry (RO) and SLAM. RO is generated from onboard wheel
encoders and an IMU. RO will have imperfect odometry due
to measurement noise and uncertainty. Five trials were run for
each trajectory and each tracking strategy. Only terminal error
is measured. The continuous robot ground truth pose signal is
unavailable.

1) Results and Analysis: Table I(c) and Fig. 6 give the out-
comes of the tested methods. SLAM has the highest average
terminal error. TS has the lowest TE average, being 42.9%
lower than RO and 56.0% lower than SLAM (p-values less than
1e-2 for both). The outcomes are consistent with those from
simulation: TS achieves better performance than pose-based
tracking strategies using V-SLAM over short segments.

In one instance RO outperformed TS, the straight trajectory.
RO pose estimation is more accurate for straight trajectories,
such that odometry drift is comparable to the image-based mo-
tion imperceptibility effects that impact TS performance under
zero desired angular velocities. This observation will be seen
again in real experiments involving long distance TS in the
following section.

2) Process Timing: Image to control timing for TS is
∼26 ms. The major time cost is V-SLAM feature tracking, with
tracked feature control calculations taking ∼1.5 ms. V-SLAM
image to pose estimate timing is ∼28 ms.

III. LONG DISTANCE TS

Short distance TS cannot extend to long trajectories due
to feature impoverishment. When moving beyond the initially
visible scene, a more comprehensive TS system should augment
the feature pool S∗ with new features. Likewise, if navigation
consists of multiple short distance trajectories, then the system
must have a regeneration mechanism for synthesizing entirely
new desired feature tracks for the new segment. The overlapping
needs for these two events inform the creation of a module for
feature replenishment and trajectory extension.

A. Feature Replenishment

The number of feature correspondences nF in S and S∗

indicates whether TS can be performed without concern. Let the
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Fig. 7. Feature replenishment process. There are three segments of
feature trajectories. Stars are observed point sets at corresponding
time. Each circle is the start or end time of next or this segment of
feature trajectory. Three feature trajectories are generated by the feature
replenishment (16).

Fig. 8. Block diagram for long distance TS. Notations follow Section I
and Section II. s∗, u∗ and ŝ, ĝWR are the corresponding desired and
measured values.

threshold τfr determine when feature replenishment should be
triggered. Define S∗

i (t)|ti,eti,s
as the ith feature trajectory starting

from ti,s and ending at ti,e. The case i = 0 represents the
first feature trajectory segment generated by (6) for ti,s = 0,
integrated up to the maximum time tend of the given trajectory.
The time varying function nF(t) is the actual number of feature
correspondences between S(t) and S∗

i (t) as the robot proceeds.
When nF(t) ≥ τfr, the feature trajectory S∗

i (t) may be used
for TS. When nF(t) < τfr, the feature replenishment process
will be triggered at the current time and noted as ti,e. The old
feature trajectory S∗

i (t)|ti,eti,s
is finished. A new feature trajectory

is generated with

S∗
i+1(t)|ti+1,e

ti+1,s
= H ◦ (g∗(ti,e, t)hR

C )
−1(QW(ti,e)) (16)

where g∗(ti,e, t) is the transformation between the current robot
pose and a future desired pose (t > ti,e) on the trajectory. The
poses behind the robot are not included. The set QW(ti,e)
consists of observed points at the current time ti,e. The fea-
ture pool is augmented by these current features. When this
regeneration step is finished, the exact time will be assigned as
the ti+1,s. TS is performed on this new feature trajectory until
the regeneration is triggered again or the arriving at the end of
the trajectory. The process of regenerating new feature tracks
is equivalent to dividing a long trajectory into a set of shorter
segments pertaining to the generated feature trajectory segments.
An depiction of feature replenishment is shown in Fig. 7.

During navigation, (16) requires the current robot pose rela-
tive to the initial pose to be known. In the absence of an abso-
lute reference or position measurement system, the only option
available is to use the estimated robot pose from V-SLAM, or
some equivalent process. Although there are some drawbacks
to relying on V-SLAM, it attempts to keep pose estimation as
accurate as possible over long periods through feature mapping,
bundle adjustment, loop closure, etc. To further couple V-SLAM
and TS, we design a multiloop scheme, see Fig. 8. The inner
loop is governed by TS with V-SLAM tracked features. The

Fig. 9. Long distance trajectories. (a) Trajectories in simulation.
(b) Trajectories in real experiments.

Fig. 10. 95% confidence intervals for long distance outcomes.

V-SLAM estimated pose is only explicitly used in the outer loop,
during feature replenishment. Though doing so may introduce
bias into the feature trajectories, the lower frequency reliance on
SLAM avoids accumulating SLAM pose estimation uncertainty
as would higher frequency use in the inner loop [44].

B. Simulation Experiments and Results

This section modifies the experiments in Section II-C to
involve longer trajectories that trigger feature replenishment and
synthesize new feature trajectory segments. The set of trajecto-
ries to track is depicted in Fig. 9(a). They are denoted as long:
right u-turn (LRU), left u-turn (LLU), straight+turn (LST), and
zig–zag (LZZ). Each trajectory is around 20 m or longer. Testing
and evaluation follows as before (minus VS+). A new tracking
method is added: TS+PO, which uses PO instead of SLAM
odometry in the feature replenishment stage. The parameter was
tuned for performance, giving τfr = 10 [44].

1) Results and Analysis: Tables II(a,b) give outcomes for the
two error metrics. Though TS continues to outperform SLAM
and is closer to PO, the gap relative to PO is larger than the
gap for short trajectories. As hypothesized, longer trajectory
error is affected by the need to use SLAM pose estimates for
regeneration. SLAM pose drift impacts trajectory tracking error
for both methods, but is attenuated when using TS. The TS+PO
outcomes confirm the impact of SLAM drift on TS performance
as the TS+PO outcomes are lower than the TS outcomes. Tighter
coupling of the TS and V-SLAM systems (e.g., using TS tracking
to assist with pose estimation) should improve the accuracy of
pose estimation, and further improve tracking performance.

Fig. 10 depicts the 95% confidence intervals of the outcomes
for the template trajectories. For ALE, the intervals and p-values
(<5e-3) imply that all pairwise comparisons are significant.
For TE, SLAM compared to any method indicates statistical
significance (p-values: <8e-3). The TE scores amongst PO, TS,
and TS+PO are not significant (p-values:>0.16). TS and TS+PO
performance is close to PO.

For long distance trajectories, TS again has similar control
effort to pose-based feedback. However, the norms of the time
differentiated control signal are 0.151, 0.148, 0.565, and 0.518
for PO, SLAM, TS, and TS+PO, respectively. TS-based control
signals remain less smooth.
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TABLE II
LONG DISTANCE TRAJECTORY BENCHMARK AND REAL EXPERIMENT RESULTS

C. Real Experiments and Results

The last experiment evaluates long trajectory performance on
a real robot. The experimental setup is similar to Section II-D.
Two long trajectories, LS and LT, in Fig. 9(b) are used, of lengths
∼13 m and ∼8 m, respectively.

1) Results and Analysis: In Table II(c), TS ranks first for the
average TE metric. Average TE decreases 31.5% from SLAM
to TS and 15.2% from RO to TS. Importantly, TS outperforms
SLAM in all cases, with lower variance (see Fig. 10). These
outcomes are consistent with the simulation results and support
the premise behind the TS system design described at the end
of Section III-A.

For the LS trajectory with long straight segments, RO outper-
forms SLAM because it has better pose estimation. Using TS
reduces the terminal error by 22.7%, compared to SLAM. TS
is more robust to pose estimation errors. Yet, it is still impacted
by the SLAM pose uncertainty arising from forward motion
imperceptibility due to TS’ use of SLAM state information for
feature regeneration. These results reproduce the observations
in Section II-D1.

2) Feature Replenishment Frequency: TS feature replenish-
ment calls queried SLAM poses 1.5 times per meter in simula-
tion and experiment. The SLAM pose-based tracking method
equivalent is 100 times per meter.

IV. CONCLUSION

This article presented an image-based trajectory tracking
approach for a nonholonomic mobile ground robot. Called TS,
it combines IBVS and V-SLAM to achieve tracking through
unknown environments without externally derived absolute po-
sitioning information. TS successfully follows short trajectories.
Using estimated robot poses from the V-SLAM module extends
trajectory tracking to longer trajectories. Experiments demon-
strate improved accuracy over pose-based trajectory tracking
using estimated SLAM poses or RO. TS is less impacted by
pose estimation error, by virtue of directly using for feedback
the features from which pose is inferred. However, the tradeoff
for relying on visual features is that feature poor environments
may not be traversable using TS.

Real-world uncertainty and disturbances as well as nons-
mooth trajectories may degrade tracking performance. Future
work intends to improve robustness of TS by adding linear
velocity control, temporal smoothness constraints, and perform-
ing uncertainty analysis on the feedback equations. In addition,
more tightly coupling TS with V-SLAM may benefit the pose
estimation process and further improve tracking performance.
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[13] A. Diosi, S. Šegvić, A. Remazeilles, and F. Chaumette, “Experimental
evaluation of autonomous driving based on visual memory and image-
based visual servoing,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 3,
pp. 870–883, Sep. 2011.

[14] G. Blanc, Y. Mezouar, and P. Martinet, “Indoor navigation of a wheeled
mobile robot along visual routes,” in Proc. IEEE Int. Conf. Robot. Autom.,
2005, pp. 3354–3359.

[15] L. Halodová et al., “Predictive and adaptive maps for long-term visual
navigation in changing environments,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2019, pp. 7033–7039.

[16] T. Do, L. C. Carrillo-Arce, and S. I. Roumeliotis, “High-speed autonomous
quadrotor navigation through visual and inertial paths,” Int. J. Robot. Res.,
vol. 38, no. 4, pp. 486–504, 2019.

[17] P. Furgale and T. Barfoot, “Visual teach and repeat for long-range rover
autonomy,” J. Field Robot., vol. 27, pp. 534–560, Sep. 2010.

[18] T. Krajník, P. Cristóforis, K. Kusumam, P. Neubert, and T. Duckett, “Image
features for visual teach-and-repeat navigation in changing environments,”
Robot. Auton. Syst., vol. 88, pp. 127–141, 2017.

[19] N. Zhang, M. Warren, and T. D. Barfoot, “Learning place-and-time-
dependent binary descriptors for long-term visual localization,” in Proc.
IEEE Int. Conf. Robot. Autom., 2018, pp. 828–835.

[20] T. Nguyen, G. K. Mann, R. G. Gosine, and A. Vardy, “Appearance-based
visual-teach-and-repeat navigation technique for micro aerial vehicle,” J.
Intell. Robot. Syst., vol. 84, no. 1/4, pp. 217–240, 2016.

[21] K. Kidono, J. Miura, and Y. Shirai, “Autonomous visual navigation of
a mobile robot using a human-guided experience,” Robot. Auton. Syst.,
vol. 40, no. 2, pp. 121–130, 2002.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 30,2023 at 23:30:38 UTC from IEEE Xplore.  Restrictions apply. 



2106 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 27, NO. 4, AUGUST 2022

[22] A. Pfrunder, A. P. Schoellig, and T. D. Barfoot, “A proof-of-concept
demonstration of visual teach and repeat on a quadrocopter using an
altitude sensor and a monocular camera,” in Proc. Can. Conf. Comput.
Robot Vis., 2014, pp. 238–245.

[23] A. Vardy, “Using feature scale change for robot localization along a route,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2010, pp. 4830–4835.

[24] N. M. Garcia and E. Malis, “Preserving the continuity of visual servoing
despite changing image features,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2004, pp. 1383–1388.

[25] C. Cadena et al., “Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEEE Trans. Robot., vol. 32,
no. 6, pp. 1309–1332, Dec. 2016.

[26] D. Fontanelli, “Mobile robot control in unknown indoor environments-the
visual slam for servoing,” Ph.D. dissertation, Dipartimento di Sistemi Elet-
trici e Automazione, Università degli Studi di Pisa, Italy, 2006. [Online].
Available: https://etd.adm.unipi.it/t/etd-05102006-093711/

[27] M. Milford and G. Wyeth, “Hybrid robot control and SLAM for per-
sistent navigation and mapping,” Robot. Auton. Syst., vol. 58, no. 9,
pp. 1096–1104, 2010.

[28] C. Li, X. Zhang, and H. Gao, “A general monocular visual servoing
structure for mobile robots in natural scene using SLAM,” in Proc. Int.
Conf. Cogn. Syst. Signal Process., 2018, pp. 465–476.

[29] C. Li, X. Zhang, H. Gao, R. Wang, and Y. Fang, “Bridging the gap
between visual servoing and visual SLAM: A novel integrated interactive
framework,” IEEE Trans. Autom. Sci. Eng., 2021, pp. 1–11.

[30] Y. Zhao and P. A. Vela, “Good feature matching: Toward accurate, ro-
bust VO/VSLAM with low latency,” IEEE Trans. Robot., vol. 36, no. 3,
pp. 657–675, Jun. 2020.

[31] L. Nardi et al., “Introducing SLAMBench, A performance and accuracy
benchmarking methodology for SLAM,” in Proc. IEEE Int. Conf. Robot.
Autom., 2015, pp. 5783–5790.

[32] S. Saeedi et al., “Navigating the landscape for real-time localization and
mapping for robotics and virtual and augmented reality,” Proc. IEEE,
vol. 106, no. 11, pp. 2020–2039, Nov. 2018.

[33] M. Bujanca et al., “SLAMBench 3.0: Systematic automated reproducible
evaluation of SLAM systems for robot vision challenges and scene under-
standing,” in Proc. IEEE Int. Conf. Robot. Autom., 2019, pp. 6351–6358.

[34] J. Delmerico and D. Scaramuzza, “A benchmark comparison of monocular
visual-inertial odometry algorithms for flying robots,” in Proc. IEEE Int.
Conf. Robot. Autom., 2018, pp. 2502–2509.

[35] I. Cvišić, J. Ćesić, I. Marković, and I. Petrović, “SOFT-SLAM: Compu-
tationally efficient stereo visual simultaneous localization and mapping
for autonomous unmanned aerial vehicles,” J. Field Robot., vol. 35, no. 4,
pp. 578–595, 2018.

[36] A. Weinstein, A. Cho, G. Loianno, and V. Kumar, “Visual inertial odometry
swarm: An autonomous swarm of vision-based quadrotors,” IEEE Robot.
Autom. Lett., vol. 3, no. 3, pp. 1801–1807, Jul. 2018.

[37] Y. Lin et al., “Autonomous aerial navigation using monocular visual-
inertial fusion,” J. Field Robot., vol. 35, no. 1, pp. 23–51, 2018.

[38] Y. Zhao, J. S. Smith, S. H. Karumanchi, and P. A. Vela, “Closed-loop
benchmarking of stereo visual-inertial SLAM systems: Understanding the
impact of drift and latency on tracking accuracy,” in Proc. IEEE Int. Conf.
Robot. Autom., 2020, pp. 1105–1112.

[39] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo con-
trol,” IEEE Trans. Robot. Automat., vol. 12, no. 5, pp. 651–670, Oct. 1996.

[40] R. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to Robotic
Manipulation. Boca Raton, FL, USA: CRC Press, 1994.

[41] R. Olfati-Saber, “Near-identity diffeomorphisms and exponential ε-
tracking and ε-stabilization of first-order nonholonomic SE(2) vehicles,”
in Proc. Amer. Control Conf., 2002, pp. 4690–4695.

[42] R. Sharma and S. Hutchinson, “Motion perceptibility and its application to
active vision-based servo control,” IEEE Trans. Robot. Automat., vol. 13,
no. 4, pp. 607–617, Aug. 1997.

[43] S. Dominguez, A. Ali, G. Garcia, and P. Martinet, “Comparison of lateral
controllers for autonomous vehicle: Experimental results,” in Proc. IEEE
19th Int. Conf. Intell. Transp. Syst., 2016, pp. 1418–1423.

[44] S. Feng, Z. Wu, Y. Zhao, and P. Vela, “Trajectory servoing,” 2022. [Online].
Available: https://github.com/ivaROS/TrajectoryServoing

[45] S. M. Weiss, “Vision based navigation for micro helicopters,” Ph.D.
dissertation, Dep. of Mechanical and Process Eng., ETH Zürich, Zürich,
2012. [Online]. Available: https://doi.org/10.3929/ethz-a-007344020

[46] S. Feng, “Frame-by-frame stereo feature tracking system,” 2020. [Online].
Available: https://github.com/ivaROS/stereoFeatureTracking.git

Shiyu Feng (Graduate Student Member, IEEE)
received the B.Eng. degree in mechanical engi-
neering from Chongqing University, Chongqing,
China, in 2015, and the M.Eng. degree in me-
chanical engineering from University of Califor-
nia, Berkeley, CA, USA, in 2016. He is currently
working toward the Ph.D. degree in mechanical
engineering with the School of Mechanical En-
gineering, Georgia Institute of Technology, At-
lanta, GA, USA.

He is a member of Intelligent Vision and Au-
tomation Laboratory (IVALab) supervised by Dr. Patricio A. Vela. His
research focuses on vision-based hierarchical navigation using sparse
representation to improve the computational efficiency and scalability.

Zixuan Wu received the B.Eng. degree in au-
tomation from Harbin Institute of Technology,
Harbin, China, in 2019, the M.Sc. degree from
School of Electrical and Computer Engineering,
Georgia Institute of Technology, USA, in 2021,
and started Ph.D. program from School of Elec-
trical and Computer Engineering, Georgia Insti-
tute of Technology, USA, in 2021.

His research interests lie in reinforcement
learning, visual servoing and visual navigation.
Recently, he works on the experience replay

optimization for heterogeneous robot teaming.

Yipu Zhao (Member, IEEE) received the B.Sc.
and M.Sc. degrees in intelligence science and
technology from the Institute of Artificial Intelli-
gence, Peking University, Beijing, China, in 2010
and 2013, respectively, and the Ph.D. degree
in electrical and computer engineering from the
School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA,
USA, in 2019 under the supervision of Patricio
A. Vela, Prior to joining Meta.

He is currently a Research Scientist with Meta
Reality Lab. His research interests include visual odometry/SLAM, 3D
reconstruction, and multiobject tracking.

Patricio A. Vela (Member, IEEE) received the
B.Sc. degree in engineering and applied sci-
ences from the California Institute of Technol-
ogy, Pasadena, CA, USA, in 1998, and the Ph.D.
degree in control and dynamical systems from
the California Institute of Technology, in 2003,
where he did his graduate research on geomet-
ric nonlinear control and robotics.

He is currently an Associate Professor with
the School of Electrical and Computer Engi-
neering, and the Institute of Robotics and In-

telligent Machines, Georgia Institute of Technology, Atlanta, GA, USA.
His research interests lie in the geometric perspectives to control theory
and computer vision. Recently, he has been interested in the role that
computer vision can play for achieving control-theoretic objectives of
(semi-)autonomous systems. His research also covers control of non-
linear systems, typically robotic systems. In 2004, He was as a Post-
Doctoral Researcher on computer vision with School of ECE, Georgia
Tech. He joined the ECE faculty at Georgia Tech in 2005.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 30,2023 at 23:30:38 UTC from IEEE Xplore.  Restrictions apply. 

https://etd.adm.unipi.it/t/etd-05102006-093711/
https://github.com/ivaROS/TrajectoryServoing
https://doi.org/10.3929/ethz-a-007344020
https://github.com/ivaROS/stereoFeatureTracking.git


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


